欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (5): 90-96.doi: 10.13385/j.cnki.vacuum.2024.05.12

• 测量与控制 • 上一篇    下一篇

离子推力器C-C复合栅多工况热态微位移研究*

高斌, 李娟, 陈娟娟, 李如月, 王彦龙   

  1. 兰州空间技术物理研究所 真空技术与物理重点实验室,甘肃 兰州 730000
  • 收稿日期:2023-12-27 出版日期:2024-09-25 发布日期:2024-10-10
  • 作者简介:高斌(1997-),男,甘肃兰州人,硕士,助理工程师。
  • 基金资助:
    *国家自然科学基金(No.62371213); 甘肃省自然科学基金项目(No.22JR5RA784)

Study on Thermal Micro-Displacement of Ion Thruster C-C Composite Grid under Multiple Conditions

GAO Bin, LI Juan, CHEN Juan-juan, LI Ru-yue, WANG Yan-long   

  1. Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
  • Received:2023-12-27 Online:2024-09-25 Published:2024-10-10

摘要: 针对LIPS-100离子推力器C-C一体化复合栅极组件设计问题,利用热特性计算模型开展栅极热力学特性研究。采用Workbench瞬态热分析法研究了两种曲面朝向的C-C栅极热性能参数,并与传统金属钼栅进行了对比分析。结果表明:等工况、等球面构型、等栅间距条件下,C-C复合栅较钼栅组件质量减轻35.7%,热态分析温度上限降低19.6%,升温速率降低21.3%;C-C复合屏栅较钼栅微位移减小0.151 mm,加速栅微位移减小0.123 mm,具有更高的抗热冲击性,可有效缓解推力器工作前期栅间距波动较大的问题;同一C-C复合栅材料下,球面朝向结构不同,栅极中心-开孔区边缘热态微位移不同,凸型栅较凹型栅加速栅微位移量降低0.025~0.038 mm,可有效提升加速栅开孔区磨损寿命。对于小尺寸离子推力器,凸面C-C复合栅组件抗热冲击性优势明显。

关键词: 离子推力器, 栅极组件, C-C复合材料, 热形变位移

Abstract: Aiming at the design of C-C integrated composite grid module of LIPS-100 ion thruster, the thermodynamic characteristics of the grid were studied by using the thermal characteristics calculation model. Using Workbench transient thermal analysis method, the thermal performance parameters of two kinds of C-C gates with different curved surface orientation were analyzed, and compared with the traditional metal molybdenum gate. The results show that under the conditions of equal working conditions, equal spherical configuration and equal gate spacing, the weight of C-C composite gate is reduced by 35.7%, the upper limit of thermal analysis temperature is reduced by 19.6%, and the heating rate is reduced by 21.3%. Compared with molybdenum grid, the displacement of C-C composite screen grid is reduced by 0.151 mm, and the displacement of acceleration gate is reduced by 0.123 mm. The C-C composite screen grid has higher thermal shock resistance and can effectively alleviate the problem of gate spacing fluctuation in the early stage of thruster operation. Under the same composite gate material, when the spherical orientation structure is different, the grid center-edge thermal micro-displacement is different, the acceleration gate micro-displacement of convex gate is reduced by 0.025-0.038 mm compared to that of the concave gate, which can effectively improve the wear life of the acceleration gate zone. For small size ion thruster, convex grid has obvious advantages in thermal shock resistance.

Key words: ion thruster, grid module, C-C composite material, thermal deformation displacement

中图分类号:  V439.4

[1] 于达仁, 乔磊, 蒋文嘉, 等. 中国电推进技术发展及展望[J]. 推进技术, 2020, 41(1): 1-11.
[2] 魏贺冉, 闫联生, 孙建涛. 离子推力器栅极材料的发展现状[J]. 材料导报, 2022, 36(22): 70-75.
[3] EMHOFF J W, BOYD I D.Modeling of total thruster performance for NASA's evolutionary xenon thruster ion optics[J]. Journal of Propulsion and Power,2006,22(4):741-748.
[4] POLK J, CHAPLIN V, ANDERSON J, et al.Modeling grid erosion in the NEXT ion thruster using the CEX2D and CEX3D codes[J]. Journal of Electric Propulsion, 2023, 2:14.
[5] CHAPLIN V H, GOEBEL D M, LEWIS R A, et al.Accelerator grid life modeling of T6 ion thruster for BepiColombo[J]. Journal of Propulsion and Power, 2021, 37(3): 436-449.
[6] KITAMURA S, MIYAZAKI K, HAYAKAWA Y, et al.Performance improvement of 150 mN xenon ion thrusters[J]. Acta Astronautica, 2003, 52(1): 11-20.
[7] HE Z H, MIAO L, ZHU Z X, et al.Analysis of sputtering yield measurements for ion thruster grid materials[J]. AIAA Journal, 2023, 61(7): 2799-2809.
[8] YAMASHITA Y, TSUKIZAKI R, DAIKI K, et al.Plasma hysteresis caused by high-voltage breakdown in gridded microwave discharge ion thruster μ10[J]. Acta Astronautica, 2021, 185: 179-187.
[9] 郭德洲, 胡竟, 杨福全, 等. 曲面栅极朝向对离子推力器影响的试验研究[J]. 真空与低温, 2022, 28(1): 115-121.
[10] 孙明明, 张天平, 王亮, 等. 30 cm离子推力器栅极组件热应力及热形变计算模拟[J]. 推进技术, 2016, 37(7): 1393-1400.
[11] 郭德洲,顾左,孔令轩. 离子推力器栅极力学性能模拟分析研究[J]. 真空科学与技术学报,2016,36(8):891-897.
[12] 李建鹏, 赵以德, 靳伍银, 等. 多模式离子推力器放电室和栅极设计及其性能实验研究[J]. 物理学报,2022, 71(19): 247-257.
[13] 张雪儿, 张天平, 李得天, 等. 离子推力器栅极极限寿命优化[J]. 推进技术, 2022, 43(9): 442-450.
[14] 郭德洲, 顾左, 陈娟娟, 等. 离子推力器变孔径栅极方案数值研究[J]. 推进技术, 2018, 39(9): 2136-2143.
[15] HASSANI B,HINTON E.A review of homogenization and topology optimization I-homogenization theory for media with periodic structures[J]. Computers and Structures, 1999, 69(9): 707-717.
[16] ZHONG L W, LIU Y, LI J, et al.Numerical simulation of characteristics of CEX ions in ion thruster optical system[J]. Chinese Journal of Aeronautics, 2010, 23(1): 15-21.
[17] MECKEL N, POLAHA J, JUHLIN N.Structural analysis of pyrolytic graphite optics for the HiPEP ion thruster[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, Florida: AIAA, 2004.
[18] LIANG X Q,YUAN J H, ZHOU S M.Finite element modeling and thermal deformation study of gate assembly of ion thruster[J]. Journal of Vacuum and Low Temperature, 2018, 24(4): 242-248.
[19] 鹿畅, 曹勇, 夏广庆. 离子推力器双阶栅极系统引出性能研究[J]. 推进技术, 2022, 43(3): 384-390.
[20] 史楷, 孙明明, 顾左, 等. 20 cm口径离子推力器力学特性模拟分析[J]. 强激光与粒子束, 2022, 34(4): 117-124.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .