欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (5): 97-109.doi: 10.13385/j.cnki.vacuum.2024.05.13

• 真空应用 • 上一篇    下一篇

真空技术在分析技术领域的作用*——TOF-SIMS分析技术在矿物样品表征上的应用

王富芳1,2, 徐子琪3, 郭冲4, 梁汉东1,2, 李展平4   

  1. 1.煤炭精细勘探与智能开发全国重点实验室,北京 100083;
    2.中国矿业大学(北京)地球科学与测绘工程学院,北京 100083;
    3.中国科学院地质与地球物理研究所,北京 100092;
    4.清华大学化学系,有机光电子与分子工程教育部重点实验室,北京 100084
  • 收稿日期:2024-05-16 出版日期:2024-09-25 发布日期:2024-10-10
  • 通讯作者: 李展平,高级工程师;梁汉东,教授。
  • 作者简介:王富芳(1998-),女,山东省泰安市人,硕士。共一作者:徐子琪(1997-),女,河南省台前县人,硕士,工程师。
  • 基金资助:
    *国家重点研发计划(2018YFA0702600)

The Role of Vacuum Technology in Analytical Technology:Application of TOF-SIMS to the Characterization of Mineral Samples

WANG Fu-fang1,2, XU Zi-qi3, GUO Chong4, LIANG Han-dong1,2, LI Zhan-ping4   

  1. 1. State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Beijing 100083, China;
    2. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
    3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100092, China;
    4. Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2024-05-16 Online:2024-09-25 Published:2024-10-10

摘要: 矿物样品的研究是矿物学、岩石学、矿床学等地质学科的基础,矿物的表面形貌、元素组成和分布特征能够揭示成矿物质来源、成矿过程和地质历史等。本文阐述了对于矿物样品表征具有广泛应用潜力的TOF-SIMS原理、技术优势及其所需的真空条件,重点总结了国内外学者应用TOF-SIMS在矿物识别、矿物成像、矿物成分定量分析和深度剖析及矿物加工上的研究进展与存在的问题,并对相关领域进行了展望。

关键词: 矿物表征, 飞行时间二次离子质谱, 成像分析

Abstract: The study of mineral samples is the basis of mineralogy, petrology, mineral deposit and other geological disciplines. The surface morphology, element composition and distribution characteristics of minerals can reveal the source of ore-forming materials, ore-forming process and geological history. This paper describes the principle, technical advantages and vacuum condition of TOF-SIMS, which has wide application potential for mineral sample characterization, focuses on summarizing the research progress and existing problems of the application of TOF-SIMS by domestic and foreign scholars in mineral identification, mineral imaging, quantitative analysis and in-depth analysis of mineral composition and mineral processing, and makes prospects in related fields.

Key words: mineral characterization, time-of-flight secondary ion mass spectrometry, imaging analysis

中图分类号:  P575.9

[1] CARBONNE J M, KISS A, BOUVIER A, et al.Surface analysis by secondary ion mass spectrometry (SIMS): principles and applications from Swiss laboratories[J]. CHIMIA, 2022, 76(1/2): 26-33.
[2] XU Z, LI S, GUO C, et al.Change of surface oxide layer of pyrite samples prepared by resin embedding polishing method after long-term placement and its effect on TOF-SIMS analysis[J]. Surfaces and Interfaces, 2024, 46: 104124.
[3] PASTERSKI M J, LORENZ M, IEVLEV A V, et al.The determination of the spatial distribution of indigenous lipid biomarkers in an immature Jurassic sediment using time-of-flight-secondary ion mass spectrometry[J]. Astrobiology, 2023, 23(9): 936-950.
[4] HUANG X F, ZHANG Q.Depression mechanism of acid for flotation separation of fluorapatite and dolomite using ToF-SIMS and XPS[J]. Journal of Molecular Liquids, 2024, 394: 123584.
[5] ENGRAND C, LESPAGNOL J, MARTIN P, et al. Multi-correlation analyses of TOF-SIMS spectra for mineralogical studies[J]. Applied Surface Science, 2004,231/232: 883-887.
[6] ENGRAND C, KISSEL J, KRUEGER F R, et al.Chemometric evaluation of time-of-flight secondary ion mass spectrometry data of minerals in the frame of future in situ analyses of cometary material by COSIMA onboard ROSETTA[J]. Rapid Communications in Mass Spectrometry, 2006, 20(8): 1361-1368.
[7] VARMUZA K, FILZMOSER P, HILCHENBACH M, et al.KNN classification — evaluated by repeated double cross validation: recognition of minerals relevant for comet dust[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 138: 64-71.
[8] KALEGOWDA Y, HARMER S L.Chemometric and multivariate statistical analysis of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulfides[J]. Analytical Chemistry, 2012, 84(6): 2754-2760.
[9] KALEGOWDA Y, HARMER S L.Classification of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulphides by principal component analysis and artificial neural networks[J]. Analytica Chimica Acta, 2013, 759: 21-27.
[10] RINNEN S, STROTH C, RIßE A, et al. Characterization and identification of minerals in rocks by ToF-SIMS and principal component analysis[J]. Applied Surface Science, 2015, 349: 622-628.
[11] STOWE K G, CHRYSSOULIS S L, KIM J Y.Mapping of composition of mineral surfaces by TOF-SIMS[J]. Minerals Engineering, 1995, 8(4): 421-430.
[12] LAI H, DENG J S, LIU Z L, et al.Determination of Fe and Zn contents and distributions in natural sphalerite/marmatite by various analysis methods[J]. Transactions of Nonferrous Metals Society of China, 2020,30(5):1364-1374.
[13] 王涛, 葛祥坤, 范光, 等. FIB-TOF-SIMS联用技术在矿物学研究中的应用[J]. 铀矿地质, 2019, 35(4): 247-252.
[14] 李展平. 飞行时间二次离子质谱(TOF-SIMS)分析技术[J]. 矿物岩石地球化学通报, 2020, 39(6): 1173-1190.
[15] MATHEZ E A, MOGK D M.Characterization of carbon compounds on a pyroxene surface from a gabbro xenolith in basalt by time-of-flight secondary ion mass spectrometry[J]. The American Mineralogist, 1998, 83(7/8):918-924.
[16] TIMMS N E, KIRKLAND C L, CAVOSIE A J, et al.Shocked titanite records Chicxulub hydrothermal alteration and impact age[J]. Geochimica et Cosmochimica Acta, 2020, 281: 12-30.
[17] SAUNDERS K, RINNEN S, BLUNDY J, et al.TOF-SIMS and electron microprobe investigations of zoned magmatic orthopyroxenes: first results of trace and minor element analysis with implications for diffusion modeling[J]. American Mineralogist, 2012, 97(4): 532-542.
[18] 梁汉东. 地质流体包裹体化学组成的离子成像方法研究[C]//中国地球物理学会第二十五届年会论文集. 合肥:中国地球物理学会,2009.
[19] 李大鹏,杜杨松, SCOTT S D,等. 幔源角闪石巨晶中硫化物熔融包裹体研究[J]. 地质学报, 2012, 86(7):1091-1105.
[20] PUTNIS C V, GEISLER T, SCHMID-BEURMANN P, et al.An experimental study of the replacement of leucite by analcime[J]. American Mineralogist, 2007, 92(1): 19-26.
[21] ACHIWAWANICH S, JAMES B D, LIESEGANG J.XPS and ToF-SIMS analysis of natural rubies and sapphires heat-treated in a reducing (5mol% H2/Ar) atmosphere[J]. Applied Surface Science, 2008, 255(5): 2388-2399.
[22] RINNEN S, GRÖGER-TRAMPE J, OSTERTAG-HENNING C, et al. ToF-SIMS as a tool for mapping reaction products of coupled dissolution-precipitation processes at mineral grain surfaces[J]. Surface and Interface Analysis, 2014, 46(S1): 330-333.
[23] 刘宇豪, 洪秀萍, 梁汉东, 等. 云贵川交界地氟病区煤系黏土-黄铁矿的风化[J]. 环境化学, 2019, 38(6):1318-1327.
[24] CAO Q Y, QIAN Y H, LIANG H D, et al.Mercury forms and their transformation in pyrite under weathering[J]. Surface and Interface Analysis, 2020, 52(5): 283-292.
[25] MARQUES A F A, SCOTT S D, SODHI R N S. Time-of-fligt SIMS(TOF-SIMS) analyses of melt inclusions[J]. The Canadian Mineralogist, 2012, 50(5): 1305-1320.
[26] SHAHWAN T, ERTEN H N, BLACK L, et al.TOF-SIMS study of Cs+ sorption on natural kaolinite[J]. The Science of the Total Environment, 1999, 226(2/3): 255-260.
[27] SHAHWAN T, ERTEN H N, BLACK L, et al.ToF-SIMS depth profiling analysis of the uptake of Ba2+ and Co2+ ions by natural kaolinite clay[J]. Journal of Colloid and Interface Science, 2004, 277(1): 23-28.
[28] DENG J S, LAI H, WEN S M, et al.Confirmation of interlayer sulfidization of malachite by TOF-SIMS and principal component analysis[J]. Minerals, 2019, 9(4): 204.
[29] 陈哲, 夏柳荫, HART B, 等. 球磨介质及尺寸对铜锌矿矿浆化学性质及矿物表面化学性质的影响[J]. 中国有色金属学报, 2017, 27(8): 1701-1707.
[30] BRITO E ABREU S, SKINNER W. Determination of contact angles, silane coverage, and hydrophobicity heterogeneity of methylated quartz surfaces using ToF-SIMS[J]. Langmuir, 2012, 28(19): 7360-7367.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .