VACUUM ›› 2020, Vol. 57 ›› Issue (5): 32-37.doi: 10.13385/j.cnki.vacuum.2020.05.08
• Thin Film • Previous Articles Next Articles
SUN Fei1, Wang Lei1, He Yun-peng1, BA De-chun1, SONG Gui-qiu1, LIN Zeng1,2
CLC Number:
[1] Berthier Y, Vincent L, Godet M.Fretting fatigue and fretting wear[J]. Tribology International, 1989, 22(4): 235-242. [2] 周仲荣, Vincent L.微动磨损[M]. 北京: 科学出版社, 2002: 1-7. [3] Waterhouse R B.Fretting fatigue[M]. London: Elsevier Applied Science, 1981. [4] 郭薇, 李健, 黄淑梅, 等. 微动幅值对Ti-6Al-4V合金摩擦特性的影响[J]. 钛工业进展, 2016, 33(5): 16-20. [5] 王成焘, 等. 人体生物摩擦学[M]. 北京: 科学出版社, 2008. [6] 万超, 郝智秀, 温诗铸. 骨科植入物的微动摩擦学研究现状及进展[J]. 摩擦学学报, 2012, 32(1): 102-112. [7] Le G L, Soueidan A, Layrolle P, et al.Surface treatments of titanium dental implants for rapid osseointegration.[J]. Dental Materials, 2007, 23(7): 844-854. [8] Jemat A, Ghazali M J, Razali M, et al.Surface modifications and their effects on titanium dental implants[J]. Biomed Research International, 2015, 2015(6): 791725. [9] Ma T, Ge X, Zhang Y, et al.Effect of titanium surface modifications of dental implants on rapid osseointegration[M]//Keiichi Sasaki, Osamu Suzuki, Nobuhiro Takahashi. Interface Oral Health Science 2016: Innovation Research on Biosis-Abiosis Intelligent Interface. NewYork: Springer, 2017: 247-256. [10] 周仲荣. 关于微动磨损与微动疲劳的研究[J]. 中国机械工程, 2000, 11(10): 1146-1150. [11] 于海洋, 蔡振兵, 朱旻昊, 等. 人股骨皮质骨轴面微动摩擦磨损特性研究[J]. 机械工程学报, 2005, 41(8): 448-452. [12] 刘道新, 何家文. 微动疲劳影响因素及钛合金微动疲劳行为[J]. 航空学报, 2001, 22(5): 454-457. [13] 沈明学, 彭金方, 郑健峰, 等. 微动疲劳研究进展[J]. 材料工程, 2010, 24(12): 86-91. [14] 罗智斌, 丁学强, 李似聪. 低弹性模量纯钛种植体的生物力学测试—在体实验研究[J]. 中国口腔种植学杂志, 2004, 9(2): 51-53. [15] 何明鉴. 机械构件的微动疲劳[M]. 北京: 国防工业出版社, 1994. [16] Jiang W, Wang W D, Shi X H, et al.The effects of hydroxyapatite coatings on stress distribution near the dental implant-bone interface[J]. Applied Surface Science, 2008, 255(2): 273-275. [17] Werner W, Daniel K, Matthias K.Micromotion of dental implants: basic mechanical considerations:[J]. J Med Eng. 2012, 2013(1): 265412. [18] Gao S S, Zhang Y R, Zhu Z L, et al.Micromotions and combined damages at the dental implant/bone interface[J]. International Journal of Oral Science, 2012, 4(4): 182. [19] 赵静辉, 周延民, 罗岚. 种植体螺纹形状对骨界面应力分布的影响[J]. 现代口腔医学杂志, 2007, 21(2): 162-165. [20] 邢晓建, 刘宝林, 刘岚. 骨结合率对种植体-骨界面应力分布的影响[J]. 西安交通大学学报(医学版), 2002, 23(4): 395-397. [21] 卢军, 潘可风, 徐晓琳, 等. 不同骨结合率对种植体骨界面应力分布的影响[J]. 口腔颌面外科杂志, 2005, 15(3): 234-237. [22] Pazos L, Corengia P, Svoboda H.Effect of surface treatments on the fatigue life of titanium for biomedical applications[J]. Journal of the mechanical behavior of biomedical materials, 2010, 3(6): 416-424. [23] Cook S D, Weinstein A M, Klawitter J J.The retention mechanics of LTI carbon, carbon-coated aluminum oxide, and uncoated aluminum oxide dental implants[J]. Journal of Biomedical Materials Research, 1983, 17(3): 873-883. [24] 梅双, 董福生, 董玉英, 等. 种植体螺距对骨界面应力分布的影响[J]. 现代口腔医学杂志, 2016(2): 70-73. [25] Ghadiri M, Shafaei N, Salekdeh S H, et al.Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2016, 38(2): 335-343. [26] 王婷婷, 王丽娜, 范震. 钛种植体阳极氧化的研究[J]. 口腔颌面外科杂志, 2016, 26(4): 290-294. [27] 王丹宁, 赵宝红. 钛种植体表面微弧氧化技术研究进展[J]. 中国实用口腔科杂志, 2010, 03(9): 570-573. [28] Liu X, Chu P K, Ding C.Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Materials Science & Engineering R, 2004, 47(3): 49-121. [29] 方蛟, 周延民, 赵静辉. 钛及钛合金表面离子注入改性的研究进展[J]. 实用口腔医学杂志, 2014(4): 560-563. [30] 曹辉亮, 刘宣勇, 丁传贤. 医用钛合金表面改性的研究进展[J]. 中国材料进展, 2009, 28(9): 9-17. [31] Yang C H, Wang Y T, Tsai W F, et al.Effect of oxygen plasma immersion ion implantation treatment on corrosion resistance and cell adhesion of titanium surface[J]. Clinical Oral Implants Research, 2011, 22(12): 1426. [32] Lin Z, Zhao J K, Du G Y, et al.Surface energy and work of adhesion of titanium oxide related materials[J]. Rare Metal Materials and Engineering, 2012, 41: 350-354. [33] Lin Z, Lee I S.Controlling of wettability of TiOx films for the biological applications[J]. Surface and coatings technology, 2010, 205: S391. [34] Lin Z, Liu K, Zhang Y C, et al.The microstructure and wettability of the TiOx films synthesized by reactive DC magnetron sputtering[J]. Materials Science and Engineering B, 2009, 156: 79. [35] Lin Z, Lee I S, Choi Y J, et al.Characterizations of the TiO2-x films synthesized by e-beam evaporation for endovascular applications[J]. Biomedical Materials, 2009, 4: 011001 [36] 王少安, 巢永烈. 种植体-基桩(台)界面结构的研究[J]. 国际口腔医学杂志, 2001, 28(5): 283-285. [37] 黎红, 黄楠, 周仲荣. 生物摩擦学及表面工程的研究现状和进展[J]. 中国表面工程, 2000, 13(1): 6-10. [38] 苟敏, 蔡潇潇. 种植体-基台微间隙对种植体颈部周围骨的影响[J]. 国际口腔医学杂志, 2015, 42(6): 733-738. [39] Rack T, Zabler S, Rack A, et al.An in vitro pilot study of abutment stability during loading in new and fatigue-loaded conical dental implants using synchrotron-based radiography[J]. International Journal of Oral & Maxillofacial Implants, 2013, 28(1): 44-50. [40] Gracis S, Michalakis K, Vigolo P, et al.Internal vs. external connections for abutments/reconstructions: a systematic review[J]. Clinical Oral Implants Research, 2012, 23(s6): 20216. [41] David G G, Steven A A, Clark M S, et al.Micromotion and dynamic fatigue properties of the dental implant-abutment interface[J]. Journal of Prosthetic Dentistry, 2001, 85(1): 47-52. [42] Hoyer S A, Stanford C M, Buranadham S, et al.Dynamic fatigue properties of the dental implant-abutment interface: joint opening in wide-diameter versus standard-diameter hex-type implants[J]. Journal of Prosthetic Dentistry, 2001, 85(6): 599-607. [43] Matthias K, Priv D.Parameters determing micromotion at the implant-abutment Interface[J]. The International Journal of Oral & Maxillofacial Implant, 2014, 29(6): 1338-1347. [44] Karl M, Taylor T D.Effect of cyclic loading on micromotion at the implant-abutment interface[J]. The International Journal of Oral & Maxillofacial Implant, 2016, 31(6): 1292-1297. [45] 贺燕, 杨德圣. 改变摩擦系数对固位螺丝稳定影响的实验研究[J]. 口腔颌面修复学杂志, 2007, 8(2): 136-137. [46] 张哲, 蔺增, 庞骏德, 等. 种植体连接螺丝表面制备碳基薄膜的生物摩擦学研究[J]. 稀有金属材料与工程, 2014(s1): 85-89. [47] 刘道新, 何家文. 经不同表面改性处理的钛合金的微动疲劳和微动磨损行为对比研究[J]. 摩擦学学报, 2005, 25(1): 13-17. [48] Jung D U, Chung C H, Son M K, et al.Effects of TiN coating on the fatigue fracture of dental implant system with various cyclic loads[J]. 2015, 48(6): 283-291. [49] Elias C N, Figueira D C, Rios P R.Influence of the coating material on the loosing of dental implant abutment screw joints[J]. Materials Science & Engineering C, 2006, 26(8): 1361-1366. [50] 汤金钢, 刘道新, 唐长斌, 等. Ti6Al4V钛合金表面阴极辅助离子氮化及其摩擦学性能[J]. 中国科学: 技术科学, 2013, 43(8): 895-900. [51] 贺瑞军, 孙枫, 王琳, 等. 钛合金离子渗氮表面完整性研究[J]. 金属热处理, 2017, 42(4): 77-81. |
[1] | ZHONG Li, SHEN Li-ru, CHEN Mei-yan, LIU Tong, DAN Min, JIN Fan-ya. Study on Tribological Properties of (Ti, Cr) N Films [J]. VACUUM, 2020, 57(2): 27-32. |
[2] | LI Xiang, LAI You-bin, YANG Bo, WANG Dong-yang, SUN Ming-han, WU Hai-long,YUAN Ren-yue, SUN Shi-jie. Application Status and Prospect of Cladding Technology on Soil-engaging Components of Agricultural Machinery [J]. VACUUM, 2020, 57(1): 83-87. |
[3] | WU Zhong-can, LIU Liang-liang, TANG Wei; YANG Chao, MA Zheng-yong. Fabrication and Properties of Robust Superhydrophobic F-DLC Coatings [J]. VACUUM, 2019, 56(6): 30-35. |
[4] | WANG Di, LIN Song-sheng, LIU Ling-yun, YANG Hong-zhi, JIANG Bai-ling, XUE Yu-na, ZHOU Ke-song. Research Progress of Surface Treatment Technology on Fatigue Properties of Titanium Alloy [J]. VACUUM, 2019, 56(6): 36-42. |
[5] | RAN Biao, LI Liu-he. The development and application of anode layer ion source [J]. VACUUM, 2018, 55(5): 51-57. |
|