VACUUM ›› 2020, Vol. 57 ›› Issue (4): 54-59.doi: 10.13385/j.cnki.vacuum.2020.04.12
• Measurement and Control • Previous Articles Next Articles
ZHAO Jie1,2, XV Li1,2, LI Jian1,2, WANG Kun1,2, WANG Shi-qing1
CLC Number:
[1] Zhurin V V, Kaufman H R, Robinson R S.Physics of closed drift thrusters[J]. Plasma Source Sci. Technol, 1999, 8: R1-R20. [2] Kaufman H R.Technology of closed-drift thrusters[J]. AIAA Journal, 1985, 23: 78-87. [3] 康小录, 杭观荣, 朱智春. 霍尔电推进器的发展与应用[J]. 火箭推进, 2017, 43(1):8-37. [4] 夏广庆, 孙安邦, 朱国强, 等. 法国等离子体推进技术的研究与发展[J]. 导弹与航天运载技术, 2010, 305(1): 52-56. [5] 刘佳, 康小录, 张岩, 等. 基于核电的大功率霍尔电推进系统设计及分析[J]. 原子能科学技术, 2019, 53(1): 9-15. [6] Morozov A I, Savelev V V.One-dimensional hydrodynamic model of the atom and ion dynamics in a stationary plasma thruster[J]. Plasma physics reports, 2000, 26(3): 219-224. [7] Subrata R, Pandey B P.Development of a finite element-based Hall-thruster model[J]. Journal of Propusion and power, 2003, 19(5): 964-971. [8] Magelaar G J, Bareilles J, Garrigues L, et al.Two-dimensional model of a stationary plasma thruster[J]. Journal of Applied Physics, 2002, 91(9): 5592-5598. [9] Han K, Wei L Q, Ji Y C, et al.Effects of a new buffer magnetic circuit on preionization and discharge in a P70 Hall thruster[J]. Journal of Propulsion Technology, 2008, 32(6): 823-827. [10] Liu H, Wu B Y, P. E, and P. Duan, “Preionization of buffer chamber in ATON Hall thruster, ” Acta Physica Sinica, 2010, 59(10): 7203-7208. [11] Yu D R, Wei L Q, Zhao Z Y, et al.Effect of preionization in Aton-type Hall thruster on low frequency oscillation[J]. Phys. Plasmas, 2008, 15(4): 43502-6. [12] Morozov A I, Esipchuck Y V, Kapulkin A M, et al.Effect of the magnetic field a closed-electron-drift accelerator[J]. Soviet Physics Technical Physics, 1972, 17: 482. [13] Tang D L, Wang L S, Pu S H, et al.Characteristics of end Hall ion source with magnetron hollow cathod discharge[J]. Nuclear Instrunents and Mehtods in Physics Research, 2007, 257: 796-800. [14] Tang D L, Zhao J, Wang L S, et al.Effects of magnetic field gradient on ion beam current in cylindrical Hall ion source[J]. Journal of Applied Physics, 123305(102): 1-3. [15] Roy S, Pandey B P.Numerical investigation of a Hall thruster plasma[J]. Physics of Plamsma. 2002, 9(9): 4052-4060. [16] Barral S.Numerical studies of Hall thrusters based on fluid equations for plasma[D]. Warszawa: Instytut Podstawowych Problemów Techniki Polska Akademia Nauk, 2003. [17] Yu D R, Wei L Q, Zhao Z K, et al.Effect of preionization in Aton-type Hall thruster on low frequency oscillation[J]. Phys. Plasmas, 2008, 15(4): 1-6. [18] Liu H, Wu B Y, Duan P E P. Preionization of buffer chamber in ATON Hall thruster[J]. Acta Physica Sinica, 2010, 59(10): 7203-7208. |
[1] | KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84. |
[2] | WANG Xiao-ming, E Dong-mei, WU Jun-sheng, ZHANG Xu-yue, ZHOU Yan-wen. Simulation of MagnetronSputtering Enhancement Based on Plasma [J]. VACUUM, 2020, 57(3): 5-6. |
[3] | ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79. |
[4] | YANG Bo, LAI You-bin, WANG Dong-yang, LI Xiang, WU Hai-long, SUN Ming-han,YUAN Ren-yue, SUN Shi-jie. Study on Surface Hardness of Plasma Cladding Layer for High Chromium Iron-Based Alloy [J]. VACUUM, 2020, 57(1): 88-93. |
[5] | WANG Dong-yang, LAI You-bin, YANG Bo, LI Xiang, WU Hai-long, SUN Ming-han, YUAN Ren-yue, SUN Shi-jie. Influence of Process Parameter on the Residual Stress of Multi-Track Overlapping Plasma Cladding [J]. VACUUM, 2019, 56(6): 80-84. |
[6] | ВВ.А.ШАПОВАЛОВ, XU Xiao-hai, WANG Yuan, SUN Zu-lai, SONG Qing-zhu, LI Jian-jun. Application of Plasma Technology in Smelting and Foundry Production [J]. VACUUM, 2019, 56(5): 1-5. |
[7] | FAN Qi-peng, HU Yu-lian, LIU Bo-wen, TIAN Xu, JIANG De-rong, LIU Zhong-wei. Deposition of Cobalt Carbide Films by Plasma Enhanced Atomic Layer Deposition [J]. VACUUM, 2019, 56(5): 56-60. |
[8] | ZHAO Jie, TANG De-li, LI Ping-chuan, GENG Shao-fei. Effect of Anode Segmented Form on Ion Beam Distribution of Anode Layer Hall Thruster [J]. VACUUM, 2019, 56(4): 1-5. |
[9] | ZHANG Zi-xin, LIU Zhong-wei, YANG Li-zhen, CHEN Qiang. Study on Performance of Silicon-Based Nitride Phosphors Coated by Plasma-Assisted Atomic Layer Deposition [J]. VACUUM, 2019, 56(4): 19-23. |
[10] | DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58. |
[11] | LI Yang, TONG Pu-chao, LI Jun-ren, ZHU Jun-li, ZHANG Zhuo-zhuo, CAO Yi-ke. Improvement and Optimization of Welding Gun for Vacuum Plasma Welding Chamber [J]. VACUUM, 2019, 56(4): 71-73. |
[12] | LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38. |
[13] | CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58. |
[14] | WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48. |
[15] | RAN Biao, LI Liu-he. The development and application of anode layer ion source [J]. VACUUM, 2018, 55(5): 51-57. |
|