VACUUM ›› 2021, Vol. 58 ›› Issue (1): 72-77.doi: 10.13385/j.cnki.vacuum.2021.01.15
• Thin Film • Previous Articles Next Articles
ZHANG Yu-chen, ZHANG Hai-bao, CHEN Qiang
CLC Number:
[1] Mang A, Reimann K, St. Rübenacke.Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure[J]. Solid State Communications, 1995, 94(4): 251-254. [2] Reynolds D C, Look D C, Jogai B.Optically pumped ultraviolet lasing from ZnO[J]. Solid State Communications, 1996, 99(12): 873-875. [3] Khomyak V V, Ilashchuk M I, Parfenyuk O A, et al.Fabrication and electrical characterization of the anisotype n-ZnO/p-CdTe heterostructures for solar cell applications[J]. Journal of Applied Physics, 2013, 114(22): 223715. [4] Jee S W, Park S J, Kim J, et al. Efficient three-dimensional nanostructured photoelectric device by Al-ZnO coating on lithography-free patterned Si nanopillars[J]. Applied Physics Letters, 2011, 99(5): 053118-053118-3. [5] Fujimura N, Kondo K, Takada Y, et al.Al: ZnO top electrodes deposited with various oxygen pressures for ferroelectric(Pb, La)(Zr, Ti)O3 capacitors[J]. Electronics Letters, 2016, 52(3): 230-232. [6] Tsai M T, Chang H C, Tsai P J. Synthesis and Characterization of AZO Thin Films by Sol-Gel Process: The Influences of Precursors and Dopants[J]. Key Engineering Materials, 2008, 368-372: 326-328. [7] Shimizu M T, Shiosaki, and A. Kawabata, Growth of c-axis oriented ZnO thin films with high deposition rate on silicon by CVD method[J]. Journal of Crystal Growth, 1982, 57(1): 94-100. [8] Haga K, Kamidaira M, Kashiwaba Y, et al. ZnO thin films prepared by remote plasma-enhanced CVD method[J]. Journal of Crystal Growth, 2000, 214-215(00): 77-80. [9] Park S H, Chang J H, Minegishi T, et al.Investigation on the ZnO: N films grown on(0001)and(0001-)ZnO templates by plasma-assisted molecular beam epitaxy[J]. Journal of Crystal Growth, 2009, 311(7): 2167-2171. [10] Kelly P J, Arnell R D.Magnetron sputtering: a review of recent developments and applications[J]. Vacuum, 2000, 56(3): 159-172. [11] Naouar M, Ka I, Gaidi M, et al.Growth, structural and optoelectronic properties tuning of nitrogen-doped ZnO thin films synthesized by means of reactive pulsed laser deposition[J]. Materials Research Bulletin, 2014, 57: 47-51. [12] 叶志镇. 磁控溅射的金属光学薄膜特性研究[J]. 真空科学与技术学报, 1989(5): 335-339. [13] Subramanyam T K, Naidu B S, Uthanna S.Effect of substrate temperature on the physical properties of DC reactive magnetron sputtered ZnO films[J]. Optical Materials, 1999, 13(2): 239-247. [14] Singh S, Srinivasa R S, Major S S.Effect of substrate temperature on the structure and optical properties of ZnO thin films deposited by reactive rf magnetron sputtering[J]. Thin Solid Films, 2007, 515(24): 8718-8722. [15] Bohlmark J, Alami J, Christou C, et al.Ionization of sputtered metals in high power pulsed magnetron sputtering[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 2005, 23(1): 18-22. [16] Loch D A L, Ehiasarian A P. A novel sputtering technique: Inductively Coupled Impulse Sputtering(ICIS)[J]. IOP Conference Series: Materials Science and Engineering, 2012, 39: 012006. [17] 张志坤. 石墨衬底半导体ZnO和SiC材料生长研究[D]. 大连: 大连理工大学, 2014. [18] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019(S1): 112-115. [19] 叶志镇. 氧化锌半导体材料掺杂技术与应用[M]. 杭州: 浙江大学出版社, 2009. [20] 李春伟, 田修波, 巩春志, 等. 不同氩气气压下钒靶HIPIMS放电特性的演变[J]. 表面技术, 45(8): 103-109. [21] Li Q, Yang L, Wang Z, et al.The superior properties of CrN coatings preparedby high power pulsed reactive magnetron sputtering[J]. AIP Advances, 2020. 10(1): 015125. [22] 张海涛. 离子源辅助高功率脉冲磁控溅射制备N掺杂p型ZnO薄膜[D]. 北京: 北京印刷学院, 2015. [23] Wang Z, Li Q, Yuan Y, et al.The semi-conductor of ZnO deposited in reactive HiPIMS[J]. Applied Surface Science, 2019, 494: 384-390. [24] Bohlmark J, Gudmundsson J T, Alami J, et al.Spatial electron density distribution in a high-power pulsed magnetron discharge[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 346-347. [25] Gudmundsson J T.The high power impulse magnetron sputtering(HiPIMS)discharge[C]. 第三届微电子及等离子体技术国际会议. [26] Youssef S, Combette P, Podlecki J, et al.Structural and Optical Characterization of ZnO Thin Films Deposited by Reactive rf Magnetron Sputtering[J]. Crystal Growth & Design, 2009, 9(2): 1088-1094. [27] 袁燕. 关于高功率脉冲磁控溅射制备ZnO薄膜的研究[D]. 北京: 北京印刷学院, 2017. [28] Tay C B, Tang J, Nguyen X S, et al.Low temperature aqueous solution route to reliable p-type doping in ZnO with K: growth chemistry, doping mechanism, and thermal stability[J]. The Journal of Physical Chemistry C, 2012, 116(45): 24239-24247. [29] Lee J S, Cha S N, Kim J M, et al.p-Type Conduction Characteristics of Lithium-Doped ZnO Nanowires[J]. Advanced Materials, 2011, 23(36): 4183-4187. [30] Balakrishnan L, Gowrishankar S, Premchander P, et al.Dual codoping for the fabrication of low resistive p-ZnO[J]. Journal of Alloys and Compounds, 2012, 512(1): 0-240. [31] Li W, Kong C, Ruan H, et al.Investigation on the formation mechanism of In-N codoped p-type ZnCdO thin films: experiment and theory[J]. Journal of Physical Chemistry C, 2014, 118(39): 22799-22806. [32] Senthil Kumar E, Chatterjee J, Rama N, et al.A codoping route to realize low resistive and stable p-type conduction in(Li, Ni): ZnO thin films grown by pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 2011, 3(6): 1974-1979. [33] 张海涛, 张海宝, 王正铎, 等. N掺p型氧化锌理论的研究进展[J]. 真空, 2016, 53(3): 12-15. |
No related articles found! |
|