欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (1): 54-58.doi: 10.13385/j.cnki.vacuum.2022.01.10

Previous Articles     Next Articles

Pretreatment of the Impregnated Cathode

LIU Yan-wen1, MENG Ming-feng1, LU Yu-xin2, ZHU Hong1, WANG Guo-jian1,3, ZHAO Heng-bang1, WANG Xiao-xia1, ZHANG Zhi-qiang1   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China;
    2. Tianjin Traffic Vocational Institute, Tianjin 300110, China;
    3. University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-03-15 Online:2022-01-25 Published:2022-01-27

Abstract: The evaporation law of impregnated cathode for microwave vacuum electronic devices is summarized, and a pretreatment method of impregnated cathode is proposed. In the ultra-high vacuum, the cathode in the electron gun is heated. When the temperature rises to 1100~1200℃,and maintains for 1~200h(the temperature and time depend on different microwave tubes). This technology solves the contradiction between cathode emission and evaporation in the electron gun. More than a dozen impregnated cathode pretreatment equipments have been developed, which improves the insulation performance of the electron gun in microwave vacuum electronic devices and reduces the grid emission. At the same time, this technology can speed up the inspection of the reliability of the protons, thereby avoiding the problem of thermon disconnection caused by the defects of the heaters during the use of microwave devices, and improving the reliability of the heater in microwave vacuum electronic devices.

Key words: microwave vacuum electronics, impregnated cathode, evaporation, cathode pretreatment

CLC Number: 

  • TN107
[1] LIU Y W, TIAN H, LU Y X.Influences of diamond material on heat dissipation capabilities of helical slow watructures[J]. IEEE Transactions on Electron Devices.2019, 66(12): 5321-5326.
[2] BARSOTTI T, GASTAUD J, PONTIC J.40W Q wideband space TWT[C]//19th IEEE International Vacuum Electronics Conference. Paris, 2018: 15-16.
[3] WANG J S, LIU W.A study of scadndia-dopedresscathode[J]. IEEE Transactions on Electron Devices, 2009, 56: 799-804.
[4] 刘燕文, 王小霞, 朱虹, 等. 金刚石材料对螺旋线慢波组件散热性能的影响[J]. 物理学报, 2013, 62(23): 234402-1-7.
[5] WANG X X, LIAO X H, ZHAO Q L, et al.Performance of an oxide cathode prepared from submierometer carbomates[J]. IEEE Transactions on Electron Devices, 2011, 58(9): 3195-3199.
[6] SHIN Y M, BARNETT L R, GAMZINA D, et al.Terahertz vacuum electronic circuitsfabricated by UV lithographic molding and reactive ion etching[J]. Appl. Phys. Lett., 2009, 95(18): 181505.
[7] CHU K R.The electron cycltron maser[J]. Rev. Mod. Phs., 2004, 76: 2489-540.
[8] SIRIGIRI J R, SHAPRIO M A, TEMKIN R.High power 140 GHz quasi-optical gyrotron travelling wave amplifier[J]. Phys.Rev.lett., 2003, 90(25): 258302.
[9] 刘燕文, 王国建, 田宏, 等. 激光驱动的新型光电阴极[J]. 中国科学信息科学, 2021, 51(9): 1575-1586.
[10] 刘燕文, 王小霞. 纳米粒子薄膜热电子发射性能[J]. 中国科学信息科, 2015, 45(1): 145-156.
[11] LIU Y W, TIAN H, HAN Y.Study on the emission properties of the impregnated cathode withnanoparticle films[J]. IEEE Trans.Electr.Devices, 2012, 59: 3618-3624.
[12] LU J, YU Z Q, SHAO W S, et al.High current density M-type cathodes for vacuum electron devices[J]. Appl. Surf. Sci., 25(1-4): 151-158.
[13] WANG X X, LIAO X H, LUO J R.Study on the Ni-Re-Ir sponge oxide cathode[J]. IEEE Trans.Electr.Devices, 2012, 59(2): 492-495.
[14] LIU Y W, TIAN H, HAN Y, et al.The temperature variation of a thermionic cathode during electron emission[J]. Science in China Series Technological Sciences E, 2008, 51(9): 1497-1501.
[15] SHAO W S, ZHANG K, LI J, et al.Gas poisoning investigations of scandateand M-type dispenser cathodes[J]. Appl.Surf.Sci, 215(1-4): 54-58.
[16] WANG J S, ZHANG X Z, LIU W, et al.High current density Sc2O3-W matrix dispenser cathode[J]. Science China Information Sciences, 2012, 55(1): 98-105.
[17] 刘燕文, 田宏, 韩勇. 支取发射电流对热阴极温度影响的研究[J]. 中国科学E, 2008, 38: 1515-1520.
[18] ISAGAWA S, HIGUCHI T, KOBAYASHI K, et al.Application of M-type cathodes to high-power cw klystrons[J]. Appl.Surf.Sci., 1999, 146(1): 89-96.
[19] IVES R L, FALCE L R, MIRAM G, et al.Controlled porosity catlodes for high-current-density application[J].IEEE Trans.Plasma Science, 2010, 38(5): 1345-1353.
[20] 刘燕文, 田宏, 韩勇. 发射均匀的覆纳米粒子薄膜阴极的研究[J]. 物理学报, 2009, 58: 535-542.
[21] CHIBA A, AKIYAMA Y.Life test evaluation of 411M cathode for highly reliable satellite TWTs[J]. Appl.Surf.Sci., 1999, 146(5): 120-125.
[22] 刘燕文, 王小霞, 陆玉新, 等. 用于电真空器件的金属材料蒸发特性[J]. 物理学报, 2016, 65(63): 338-344.
[23] ZHANG M C, LIU Y W, YU S J, et al.Life test studies on dispenser cathode with dual-layer porous tungsten[J]. IEEE Transactions on Electron Devices, 2014, 61(8): 2983-2988.
[24] 刘学悫. 阴极电子学[M]. 北京: 科学出版社, 1980: 105.
[25] 刘燕文, 孟鸣凤, 朱虹, 等. 一种用于热阴极的高可靠热子[J]. 真空科学技术学报, 2015, 35(1): 79-83.
[26] 刘燕文, 田宏, 朱虹, 等. 电子轰击材料出气性能[J]. 真空科学技术学报, 2017, 37(4): 363-368.
[27] 刘联宝. 电子工业技术手册(4)[M]. 北京: 国防工业出版社, 1990: 317.
[28] 刘燕文, 田宏, 朱虹, 等. 用于微波电真空器件高效覆膜阴极组件的研究[J]. 真空科学与技术学报, 2006, 26(3): 240-242.
[29] LIPLES R A, KAN H K.Chemical stability of barium calcium aluminate dispenser cathode impregnants[J]. Appl.Surf.Sci., 1983, 130(16): 189-206.
[30] GREN M C, KINNER H B S, TUCK H A.Osmium-tungsten alloys and their relevance to improved M-typed cathode[J]. Appl.Surf.Sci., 1981(8): 13-35.
[31] GOTOH T, HIRASAWA S, KINOSITA K.Measurement of sticking coefficient of gold atoms on MgO with a torsion microbalance[J]. Thin Solid Film, 1982(87): 385-392.
[32] VERHOEVEN A T, VANDOVEREN H.Some observations on evaporation phenomena of oxide cathode by an AES-based vapour collect method[J]. Appl.Surf.Sci., 1981(8): 95-107.
[33] 刘燕文, 田宏, 韩勇. 利用飞行时间质谱研究热阴极蒸发特性[J]. 真空科学与技术学报, 2007, 27(5): 437-441.
[34] 刘燕文, 邓峰, 刘濮鲲, 等. 一种电子枪中热阴极预处理方法: CN103325642B[P].2016-06-29.
[1] FU Xue-cheng, MAO Hai-ping, QU Min-ni, WU Li-ying, WANG Ying. Mechanism Analysis and Control of Material Splashing in the Deposition of Gold Film by using Glassy Carbons Crucible [J]. VACUUM, 2021, 58(6): 27-32.
[2] LI Kun, XIONG Yu-qing, WANG Hu, ZHANG Kai-feng, WANG Lan-xi, ZHOU Hui. Effect of Evaporation Rate on the Properties of ZnS Films [J]. VACUUM, 2021, 58(2): 15-19.
[3] LI Bao-chang, LIU Guang-zhuang, YANG Zhao, LUO Jun-yao, TA Shi-wo. Study on Metallization Technology of Ni-Zn Ferrite Substrate [J]. VACUUM, 2019, 56(4): 31-33.
[4] SUI Wen, ZHANG Chi, LI Jian-chang. Design of a small-scale vacuum fabrication system specialized for studying organic light-emitting diodes [J]. VACUUM, 2019, 56(3): 6-9.
[5] HAN Feng, ZHANG Shi-wei, WANG De-xi, LIU Bo, WANG Meng. Dangerous industrial wastewater treatment based on vacuum evaporation technology [J]. VACUUM, 2019, 56(1): 67-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .