欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (4): 80-85.doi: 10.13385/j.cnki.vacuum.2022.04.15

• Vacuum Technology Application • Previous Articles     Next Articles

Simulation on Thermal Comfort of Astronaut Wearing Space Suit Under the Condition of Cabin Pressure Loss

FANG Ming-yuan, WU Yue, ZHANG Yang, XU Zhong-xu   

  1. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
  • Received:2021-10-11 Online:2022-07-25 Published:2022-08-09

Abstract: The intravehicular activity space suit is an important guarantee for astronauts to sustain life in the case of pressure loss in the cabin. The thermal comfort of astronauts is one of the important factors to be considered in the long time pressure loss condition. Based on the lumped parameter method, the thermal model of the spacesuit in the cabin is established, and the human-spacesuit thermal model is established with the Fiala model. The correctness of the simulation is verified by the domestic experimental data. Based on the simulation, the change rules of thermal comfort and humidity of ventilation gas under different pressure loss conditions were obtained, and the system optimization scheme was put forward, which provided reference for the design of emergency cabin pressure protection system and the formulation of life protection scheme in China.

Key words: human thermal model, space suit thermal model, numerical simulation, thermal comfort, cabin pressure loss

CLC Number: 

  • V445.1
[1] 张永, 李明, 韩增尧. 微流星体/空间碎片环境下压力舱的气体泄漏分析[J]. 航天器环境工程, 2008, 25(4): 310-314.
[2] 张汝果. 航天中压力应急防护措施的发展[J]. 航天医学与医学工程, 1995(3): 163-166.
[3] THOMAS K S, MCMANN H J.US spacesuits[M]. Chichester: Springer, 2012.
[4] CRANE A.Orion suit equipped to expect the unexpected on artemis missions[M]. NASA, 2019.
[5] BUE G, CONGER B, IOVINE J, et al.ASDA-advanced suit design analyzer computer program[C]//22nd International Conference on Environmental Systems. SAE Technical Paper, 1992: 921381.
[6] CAMPBELL A B, MAYS C, NAIR S S, et al.PLSS thermal model requirements for control[C]// 27th International Conference on Environmental Systems. SAE Technical Paper, 1997: 972506.
[7] CAMPBELL A B, FRENCH J D, NAIR S S, et al.Dynamic modeling of the minimum consumables PLSS[C]// 29th International Conference on Environmental Systems. SAE Technical Paper, 1999.
[8] MAYS D C, FRENCH J, NAIR S S, et al.Design of a transient thermal model of the cryogenic PLSS[C]// 29th International Conference on Environmental Systems, SAE Technical Paper, 1999.
[9] SMITH L F, NAIR S S, MILES J B, et al.Evaluating human thermal models for advanced portable life support system control development[C]// 23rd International Conference on Environmental Systems. SAE Technical Paper, 1993: 932186.
[10] 袁修干. 人体热调节系统的数学模拟[M]. 北京: 北京航空航天大学出版社, 2005.
[11] 邱义芬, 袁修干, 梅志光, 等. 舱外航天液冷服传热分析[J]. 航天医学与医学工程, 2001, 14(5): 364-367.
[12] 邱义芬, 袁修干, 梅志光. 舱外航天通风系统传热分析[J]. 航空学报, 2001, 22(5): 444-446.
[13] 王晶, 袁卫星, 袁修干. 基于Simulink的航天服便携式生保系统仿真研究[J]. 系统仿真学报, 2008, 20(24): 6811-6814.
[14] 方明元, 王晶, 李西园, 等. 用于人-航天服仿真的人体热模型发展研究[J]. 载人航天, 2020, 26(2): 244-251.
[15] FIALA D, LOMAS K J, STOHRER M.A computer model of human thermoregulation for a wide range of environmental conditions: the passive system[J]. Journal of Applied Physiology, 1999, 87(5): 1957-1972.
[16] FIALA D, LOMAS K J, STOHRER M.Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions[J]. Int J Biometeorol, 2001, 45(3): 143-159.
[17] 李杰. 舱外航天服—人体热耦合数值模拟[D]. 南京: 南京航空航天大学, 2017.
[18] FIALA D.Dynamic simulation of human heat transfer and thermal comfort[D]. Leicester: De Montfort University Leicester, 1998.
[19] 王海英, 王美楠, 胡松涛, 等. 低气压环境下标准有效温度与舒适区的计算[J]. 暖通空调, 2014, 44(10): 22-25.
[20] CAMPBELL A B, FRENCH J D, NAIR S S, et al.Thermal analysis and design of an advanced space suit[J]. Journal of thermophysics and heat transfer, 2000, 14(2): 151-160.
[21] 方明元, 王晶, 李西园, 等. 舱内失压下航天员热舒适度和散热量仿真[J]. 宇航学报, 2021, 42(5): 660-668.
[22] 滕育英, 袁春燕, 杜国杰, 等. 国外航天服的研制与发展[M]. 北京: 航天医学工程研究所, 1997.
[1] LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15.
[2] WANG Jun-wei, GONG Jie, DING Wen-jing, XU Jing-hao, GU Miao, ZHANG Li-ming. Numerical Simulation and Analysis of Spatial Rapid Decompression Process Based on Dynamic Grid [J]. VACUUM, 2022, 59(2): 32-37.
[3] LI Cheng-ming, SU Ning, LI Lin, YAO Wei-zhen, YANG Shao-yan. Flow Field Analysis and Large-Scale Material Growth in a Vertical Graded Varying Velocity Hydride Vapor Phase Epitaxy(HVPE) Reactor [J]. VACUUM, 2021, 58(2): 1-5.
[4] ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow [J]. VACUUM, 2021, 58(1): 38-44.
[5] ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59.
[6] KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84.
[7] ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79.
[8] DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58.
[9] LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38.
[10] CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58.
[11] WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!