欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (2): 1-5.doi: 10.13385/j.cnki.vacuum.2021.02.01

• Thin Film •     Next Articles

Flow Field Analysis and Large-Scale Material Growth in a Vertical Graded Varying Velocity Hydride Vapor Phase Epitaxy(HVPE) Reactor

LI Cheng-ming1,2, SU Ning3, LI Lin4, YAO Wei-zhen1, YANG Shao-yan1,5   

  1. 1. Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 10083, China;
    2. Dongguan Institute of Opto-Electronics Peking University, Dongguan 523808, China;
    3. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China;
    4. Hunan Institue of Information Technology, Changsha 410151, China;
    5. Center of Materials Science and Optoelectronics Engineering, University of Chinese Acasdemy of Sciences, Beijing 100049, China
  • Received:2020-01-19 Online:2021-03-25 Published:2021-04-09

Abstract: Gallium nitride(GaN), as the representative of the wide gap semiconductor materials, is one of the important strategic development directions in our country. As an important material growth technology, hydride vapor phase epitax(HVPE) is an effective method for the fabrication of single crystal materials. In this paper, we propose a new flow field and temperature field of HVPE under the condition of stratified flow rate. The results indicate that the reaction precursors can be effectively distributed on the surface of the substrate susceptor when the flow velocity in the outer jet inlets region is three times that in the center region. Finally, HVPE material was grown on the surface of GaN seed crystal on sapphire substrate, and GaN single crystal with average thickness of 20.1 μm and uniformity fluctuation of 6.9% was obtained, which proved that good single crystal film material was grown under theoretical optimization design.

Key words: HVPE, reactor, gallium nitride(GaN), numerical simulation, nozzle

CLC Number: 

  • O484.1
[1] MEI F, WU K M, PAN Y, et al. Structural and optical properties of Cr-doped semi-insulating GaN epilayers[J]. Appl. Phys. Lett., 2008, 93(11):113507-113507-3.
[2] CHIU C H, YEN H H, CHAO C L, et al.Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template[J]. Appl. Phys. Lett., 2008, 93(8): 081108.
[3] GROWDEN T A, CORNUELLE E M, STORM D F, et al.930 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes grown on MOCVD GaN-on-sapphire template[J]. Appl. Phys. Lett., 2019, 114(20): 203503.
[4] CHENG Y, LIU P, WU J J, et al.High uniform growth of 4-inch GaN wafer via flow field optimization by HVPE[J]. J. Cryst. Growth, 2016,445: 24-29.
[5] RAZEGHI M, MCCLINTOCK R.A review of III-nitride research at the Center for Quantum Devices[J]. J. Cryst. Growth, 2009, 311(10): 3067-3074.
[6] CHO Y S, SUN Q, LEE I H, et al.Reduction of stacking fault density in m-plane GaN grown on SiC[J]. Appl. Phys. Lett., 2008, 93(11): 111904.
[7] YE Z, NITTA S G, NAGAMATSU K, et al.Ammonia decomposition and reaction by high-resolution mass spectrometry for group III-itride epitaxial growth[J]. J. Cryst. Growth, 2019, 516(76): 63-66.
[8] DINH D V, PARBROOK P J.Control growth orientation of semipolar GaN layers grown on 3C-SiC/(001) Si[J]. J. Cryst. Growth, 2018, 501: 34-37.
[9] LI H J, KANG J J, LI P P, et al.Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer[J].Appl. Phys. Lett., 2013, 102(1): 011105.
[10] WU T T, LO S Y, HUANG H M, TSAO C W, et al.High quality factor nonpolar GaN photonic crystal nanocavitie[J]. Appl. Phys. Lett., 2013, 102(19): 191116.
[11] WU Y Z, LIU B, LI Z H, et al.Homo-epitaxial growth of high crystal quality GaN thin films by plasma assisted-molecular beam epitaxy[J]. J. Cryst. Growth, 2019, 506: 30-35.
[12] MORISHITA M, KAWAMURA F, IWAHASHI T, et al.Growth of bulk GaN single crystals using Li-Na mixed flux system[J]. Jpn. J. Appl. Phys., 2003, 42(6A): 565-567.
[13] SYTNIEWSKI L J, LAPKIN A A, STEPANOV S, et al.CFD optimisation of up-flow vertical HVPE reactor for GaN growth[J]. J. Cryst. Growth, 2008, 310(14): 3358-3365.
[14] FREITAS J A, CULBERTSON J C, GLASER E R, et al.Efficient iron doping of HVPE GaN[J]. J. Cryst. Growth, 2018, 500(5): 111-116.
[15] HITE J K, ANDERSON T J, LUNA L E, et al.Influence of HVPE substrates on homoepitaxy of GaN grown by MOCVD[J]. J. Cryst. Growth, 2018, 498(3): 352-356.
[16] BOCKOWSKI M, IWINSKA M, AMILUSIK M, et al.Doping in bulk HVPE-GaN grown on native seeds-highly conductive and semi-insulating crystals[J]. J. Cryst. Growth, 2018, 499(1): 1-7.
[17] FUJIKURA H, KONNO T.Fabrication of large flat gallium nitride templates with extremely low dislocation densities in the 106cm2 range by novel two-side hydride vapor-phase epitaxial growth[J]. J. Cryst. Growth, 2017, 475: 208-215.
[18] GU C Y, LEE C M, LIU X L.Design of a three-layer hot-wall horizontal flow MOCVD reactor[J]. Semicond., 2012, 33(9): 093005.
[19] ZUO R, ZHANG H, LIU X L.Transport phenomena in radial flow MOCVD reactor with three concentric vertical inlets[J]. J. Cryst. Growth, 2006, 293(2): 498-508.
[20] ZUO R, XU Q, ZHANG H.An inverse-flow showerhead MOVPE reactor design[J]. J. Cryst. Growth, 2007, 298(5): 425-427.
[1] ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow [J]. VACUUM, 2021, 58(1): 38-44.
[2] HUANG Fan, YE Wan-yi, QI Shi-jin, CAO Hui, GUO Chun-hai, CHEN Yao, YU Wen-xin. Effect of High Temperature on Helium Leak Test Results of the TVS-2M Fuel Rod [J]. VACUUM, 2020, 57(5): 66-69.
[3] ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59.
[4] KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84.
[5] GAO Chao, ZHANG Ji-feng, TANG Rong. Development of CVD Reaction Furnance for Graphene Preparation [J]. VACUUM, 2020, 57(3): 30-33.
[6] ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79.
[7] DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58.
[8] LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38.
[9] CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58.
[10] WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Jie, KANG Song, DONG Chang-kun. Study on Working Performance for Low Pressure Carbon Nanotube Micro Sensor[J]. VACUUM, 2021, 58(1): 1 -5 .
[2] LI Fu-song, WANG Wen-jun, LIN Wei-jian, PAN Ya-juan. Design of Intelligent Screw Air Compressor Performance Testing System[J]. VACUUM, 2021, 58(1): 19 -22 .
[3] YANG Nai-heng. Analysis and Discussion on the Vacuum Pump for Vacuum Degassing[J]. VACUUM, 2021, 58(1): 29 -32 .
[4] WANG Xun. Vacuum Measurement and Application for Aerospace[J]. VACUUM, 2021, 58(1): 15 -18 .
[5] ZHANG Shi-wei, SUN Kun, HAN Feng. Discussion on Several Common Problems in Screw Vacuum Pump Design[J]. VACUUM, 2021, 58(1): 23 -28 .
[6] . [J]. VACUUM, 2020, 57(6): 84 -86 .
[7] CHAI Hao, JIA Jun-wei, WANG Bin, LI Peng, CUI Shuang, FENG Xu, LI Wei, LIU Zhan, LI Shao-fei, CHEN Quan. Design and Characteristic Study on Compact Microwave ECR Plasma Source[J]. VACUUM, 2021, 58(1): 6 -9 .
[8] ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation[J]. VACUUM, 2021, 58(1): 10 -14 .
[9] CAI Xiao, CAO Zeng, ZHANG Wei, LI Rui-jun, HUANG Yong. Development of Pre-pumping System for Vacuum Chamber of HL-2M[J]. VACUUM, 2021, 58(1): 33 -37 .
[10] ZHANG Yu-chen, ZHANG Hai-bao, CHEN Qiang. Review on Semi-Conductive ZnO Thin Film Prepared by HiPIMS[J]. VACUUM, 2021, 58(1): 72 -77 .