VACUUM ›› 2021, Vol. 58 ›› Issue (2): 1-5.doi: 10.13385/j.cnki.vacuum.2021.02.01
• Thin Film • Next Articles
LI Cheng-ming1,2, SU Ning3, LI Lin4, YAO Wei-zhen1, YANG Shao-yan1,5
CLC Number:
[1] MEI F, WU K M, PAN Y, et al. Structural and optical properties of Cr-doped semi-insulating GaN epilayers[J]. Appl. Phys. Lett., 2008, 93(11):113507-113507-3. [2] CHIU C H, YEN H H, CHAO C L, et al.Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template[J]. Appl. Phys. Lett., 2008, 93(8): 081108. [3] GROWDEN T A, CORNUELLE E M, STORM D F, et al.930 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes grown on MOCVD GaN-on-sapphire template[J]. Appl. Phys. Lett., 2019, 114(20): 203503. [4] CHENG Y, LIU P, WU J J, et al.High uniform growth of 4-inch GaN wafer via flow field optimization by HVPE[J]. J. Cryst. Growth, 2016,445: 24-29. [5] RAZEGHI M, MCCLINTOCK R.A review of III-nitride research at the Center for Quantum Devices[J]. J. Cryst. Growth, 2009, 311(10): 3067-3074. [6] CHO Y S, SUN Q, LEE I H, et al.Reduction of stacking fault density in m-plane GaN grown on SiC[J]. Appl. Phys. Lett., 2008, 93(11): 111904. [7] YE Z, NITTA S G, NAGAMATSU K, et al.Ammonia decomposition and reaction by high-resolution mass spectrometry for group III-itride epitaxial growth[J]. J. Cryst. Growth, 2019, 516(76): 63-66. [8] DINH D V, PARBROOK P J.Control growth orientation of semipolar GaN layers grown on 3C-SiC/(001) Si[J]. J. Cryst. Growth, 2018, 501: 34-37. [9] LI H J, KANG J J, LI P P, et al.Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer[J].Appl. Phys. Lett., 2013, 102(1): 011105. [10] WU T T, LO S Y, HUANG H M, TSAO C W, et al.High quality factor nonpolar GaN photonic crystal nanocavitie[J]. Appl. Phys. Lett., 2013, 102(19): 191116. [11] WU Y Z, LIU B, LI Z H, et al.Homo-epitaxial growth of high crystal quality GaN thin films by plasma assisted-molecular beam epitaxy[J]. J. Cryst. Growth, 2019, 506: 30-35. [12] MORISHITA M, KAWAMURA F, IWAHASHI T, et al.Growth of bulk GaN single crystals using Li-Na mixed flux system[J]. Jpn. J. Appl. Phys., 2003, 42(6A): 565-567. [13] SYTNIEWSKI L J, LAPKIN A A, STEPANOV S, et al.CFD optimisation of up-flow vertical HVPE reactor for GaN growth[J]. J. Cryst. Growth, 2008, 310(14): 3358-3365. [14] FREITAS J A, CULBERTSON J C, GLASER E R, et al.Efficient iron doping of HVPE GaN[J]. J. Cryst. Growth, 2018, 500(5): 111-116. [15] HITE J K, ANDERSON T J, LUNA L E, et al.Influence of HVPE substrates on homoepitaxy of GaN grown by MOCVD[J]. J. Cryst. Growth, 2018, 498(3): 352-356. [16] BOCKOWSKI M, IWINSKA M, AMILUSIK M, et al.Doping in bulk HVPE-GaN grown on native seeds-highly conductive and semi-insulating crystals[J]. J. Cryst. Growth, 2018, 499(1): 1-7. [17] FUJIKURA H, KONNO T.Fabrication of large flat gallium nitride templates with extremely low dislocation densities in the 106cm2 range by novel two-side hydride vapor-phase epitaxial growth[J]. J. Cryst. Growth, 2017, 475: 208-215. [18] GU C Y, LEE C M, LIU X L.Design of a three-layer hot-wall horizontal flow MOCVD reactor[J]. Semicond., 2012, 33(9): 093005. [19] ZUO R, ZHANG H, LIU X L.Transport phenomena in radial flow MOCVD reactor with three concentric vertical inlets[J]. J. Cryst. Growth, 2006, 293(2): 498-508. [20] ZUO R, XU Q, ZHANG H.An inverse-flow showerhead MOVPE reactor design[J]. J. Cryst. Growth, 2007, 298(5): 425-427. |
[1] | ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow [J]. VACUUM, 2021, 58(1): 38-44. |
[2] | HUANG Fan, YE Wan-yi, QI Shi-jin, CAO Hui, GUO Chun-hai, CHEN Yao, YU Wen-xin. Effect of High Temperature on Helium Leak Test Results of the TVS-2M Fuel Rod [J]. VACUUM, 2020, 57(5): 66-69. |
[3] | ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59. |
[4] | KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84. |
[5] | GAO Chao, ZHANG Ji-feng, TANG Rong. Development of CVD Reaction Furnance for Graphene Preparation [J]. VACUUM, 2020, 57(3): 30-33. |
[6] | ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79. |
[7] | DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58. |
[8] | LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38. |
[9] | CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58. |
[10] | WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48. |
|