欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (5): 80-85.doi: 10.13385/j.cnki.vacuum.2022.05.14

• Vacuum Technology Application • Previous Articles     Next Articles

Effect of Charged Particle Radiation on Electrical Properties of Carbon Nanotube Paper

TIAN Hai1,2, FENG Zhan-zu2, WANG Yi1,2, LIU Qing2, BA De-dong2   

  1. 1. National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment,Lanzhou 730000, China;
    2. Lanzhou Institute of Physics, Lanzhou 730000, China
  • Received:2021-12-20 Online:2022-09-25 Published:2022-09-28

Abstract: Carbon nanotube is a one-dimensional quantum material with special structure. It has excellent mechanical, electrical and chemical properties. It is an ideal candidate material for electronic components in the future. When carbon nanotubes are used in spacecraft, the influence of space charged particle radiation environment on their properties should be fully considered. According to the space application requirements of carbon nanotubes and based on the radiation environment of charged particles in geosynchronous orbit, this paper studies the effects of electrons and protons on the microstructure and conductivity of carbon nanotube paper. The electron energy is 200.0kev, 500.0keV and 1000keV, and the proton energy is 500.0keV and 1.0MeV. The results show that the degradation of the electrical properties of carbon nanotube paper materials is due to the change of surface structure of the material, and the number of defects in the material increases under irradiation, which affects the migration path of carriers in the material and leads to the decline of its electrical properties.

Key words: carbon nanomaterial, radiation effect, space environment, degradation mechanism, space material

CLC Number: 

  • V416.5
[1] 王本力. NASA《2015技术路线图》对我国纳米技术发展的启示[J]. 新材料产业, 2018(1): 26-28.
[2] 李得天, 成永军, 张虎忠, 等. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1-9.
[3] 王惠芬, 刘刚, 曹康丽, 等. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(S1): 78-83.
[4] SIOCHI E J.Graphene in the sky and beyond[J]. Nature Nanotechnology, 2014, 9(10): 745-747.
[5] 程彭超, 闵锐. 近地空间辐射环境与防护方法概述[J]. 辐射防护通讯, 2017, 37(1): 14-21.
[6] 甄小娟, 黄一凡, 杨生胜, 等. 碳纳米材料辐射效应研究现状[J]. 空间科学学报, 2019, 39(6): 787-799.
[7] LI Z H, CHEN S Y, NAMBIAR S, et al.PMMA/MWCNT nanocomposite for proton radiation shielding applications[J]. Nanotechnology, 2016, 27(23): 234001.
[8] ABBE E, T SCHÜLER, KLOSZ S, et al. Electrical behaviour of carbon nanotubes under low-energy proton irradiation[J]. Journal of Nuclear Materials, 2017, 495: 299-305.
[9] KUMARI R, TYAGI P K, PURI N K.Electron irradiation induced wall-to-wall joining of multiwalled carbon nanotubes[J]. Applied Surface Science, 2018, 453: 153-158.
[10] YANG G, KIM B J, KIM K, et al.Energy and dose dependence of proton-irradiation damage in graphene[J]. RSC Adv, 2015, 5(40): 31861-31865.
[11] XU Z W, LIU L S, HUANG Y D, et al.Graphitization of polyacrylonitrile carbon fibers and graphite irradiated by gamma rays[J]. Materials Letters, 2009, 63(21): 1814-1816.
[12] 董小花. 电子束辐照诱导多壁碳纳米管非晶化研究[D]. 厦门: 厦门大学, 2019.
[13] GOMEZ-NAVARRO C, PABLO P J D, GOMEZ-HERRERO J, et al. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime[J]. Nature Materials, 2005, 4(7): 534-539.
[14] RUI E, YANG J Q, LI X J, et al.Change of surface morphology and structure of multi-walled carbon nanotubes film caused by proton irradiation with 170 keV[J]. Applied Surface Science, 2013, 287: 172-177.
[15] ABBE E, SCHÜLER T, KLOSZ S, et al. Electrical behaviour of carbon nanotubes under low-energy proton irradiation[J]. Journal of Nuclear Materials: Materials Aspects of Fission and Fusion, 2017, 495: 299-305.
[16] KUMARI R, TYAGI P K, PURI N K.Electron irradiation induced wall-to-wall joining of multiwalled carbon nanotubes[J]. Applied Surface Science, 2018, 453: 153-158.
[17] BANHART F, LI J X, KRASHENINNIKOV A V.Carbon nanotubes under electron irradiation: Stability of the tubes and their action as pipes for atom transport[J]. Physical Review B, 2005, 71(24): 241408.
[18] 杨剑群, 李兴冀, 马国亮, 等. 170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响[J]. 物理学报, 2015, 64(13): 316-323.
[19] 马国亮, 李兴冀, 杨剑群, 等. 电子辐照LDPE/ MWCNTs复合材料的熔融与结晶行为[J]. 物理学报, 2016, 65(20): 246-258.
[20] SLOBODIAN O M, TIAGULSKYI S I, NIKOLENKO A S, et al.Micro-Raman spectroscopy and electrical conductivity of graphene layer on SiO2 dielectric subjected to electron beam irradiation[J]. Materials Research Express, 2018, 5(11): 116405.
[21] COMPAGNINI G, GIANNAZZO F, SONDE S, et al.Ion irradiation and defect formation in single layer graphene[J]. Carbon, 2009, 47(14): 3201-3207.
[22] 郝欢欢, 刘晶冰, 李坤威, 等. 拉曼光谱表征石墨烯结构的研究进展[J]. 材料工程, 2018, 46(5): 1-10.
[23] 郑意雄. 静态双能CT用碳纳米管/石墨烯复合结构冷阴极X光管的研制[D]. 成都: 电子科技大学, 2017.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .