欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (2): 57-62.doi: 10.13385/j.cnki.vacuum.2023.02.10

• Vacuum Acquisition System • Previous Articles     Next Articles

Design and Calculation of O-type Rubber Sealing for Space Environment Simulation Equipment

FENG Zhi-meng1, LIU Hai-jing1, WANG Fei1, LI Can-lun1, QIAO Hong2, JING Jia-rong1   

  1. 1. Shanghai Institute of Spacecraft Equipment, 200240 Shanghai, China;
    2. Contemporary Amperex Technology Co., Limited CATL, 200240 Shanghai, China
  • Received:2022-07-11 Online:2023-03-25 Published:2023-03-27

Abstract: This paper presents a design and calculation method of O-type rubber sealing ring for vacuum. The approximation equation for calculating the elastic deformation pressure of O rubber sealing is derived, combined with the design parameters of O sealing ring that have been successfully used in engineering practice, O rubber seal compression elastic force and atmospheric pressure in vacuum environment are calculated, and the corresponding relationship between them is obtained by polynomial fitting method. The atmospheric pressure of O-type rubber seal ring to be solved is the input condition,and the geometric parameters of O-type rubber seal ring are inversely solved by using the approximate formula of elastic deformation pressure of the seal ring. In order to verify the reliability of the calculation method, Mooeny-Rivlin model was used to simulate the calculation results. The results show that the maximum stress of the flange O-type rubber sealing ring with diameter of 7500mm is about 7.01MPa under atmospheric pressure, and no permanent damage will occur, which proves that the design and calculation method of O-type rubber sealing ring is feasible.

Key words: vacuum seal, O-type rubber sealing, simulation, numerical analysis

CLC Number: 

  • TB42
[1] 雍占福, 王瑞华, 王文峰, 等. 基于ABAQUS炭黑填充三元乙丙橡胶超弹性本构模型的分析与比较[J]. 青岛科技大学学报(自然科学版), 2018, 39(1): 80-83.
[2] 达道安. 真空设计手册[M]. 北京: 机械工业出版社, 2004.
[3] 闫余加. O形胶圈受压弹性变形压力的计算[J]. 机械管理开发, 2009, 24(2): 63-64.
[4] 许浩, 曾良才, 湛从昌. O形密封圈沟槽底角对密封性能的影响[J]. 武汉科技大学学报, 2019, 42(4): 285-289.
[5] 李晓芳, 杨晓翔. 橡胶材料的超弹性本构模型[J]. 弹性体, 2005, 15(1): 50-58.
[6] 王朝晖, 何康康. O形橡胶密封圈的非线性有限元分析[J]. 制造技术研究(航天制造技术), 2016, 4(2): 4-8.
[7] SWAMYNATHAN S, JOBST S, KIENLE D, et al.Phase-field modeling of fracture in strain-hardening elastomers:variational formulation,multiaxial experiments and validation[J]. Engineering Fracture Mechanics, 2022, 265: 108303.
[8] YU X M, ZHANG B, GU B Q.Creep and stress relaxation performance of rubber matrix sealing composites after fatigue loading[J]. Fibers and Polymers, 2022, 23(2): 471-477.
[9] 成大先. 机械设计手册(第三卷)[M]. 北京: 化学工业出版社, 2007: 164-169.
[10] 闵涛, 晏立刚, 陈星. 一类Fredholm-Volterra型积分方程的数值求解[J]. 应用泛函分析学报, 2015, 17(2): 163-169.
[11] 刘雪, 丁晓, 王晓莹, 等. 有限元求解弹性力学方程的数值实践[J]. 南通职业大学学报, 2022, 36(1): 56-60.
[12] MA L P, XU S G, QIAO J P.Optimization design of sealing strip section based on finite element analysis[C]//Proceedings of 2019 China SAE Congress, Shanghai, 2019.
[13] 徐中明, 袁泉, 张志飞, 等. 基于超静定方程的橡胶材料本构模型参数识别[J]. 重庆大学学报, 2017, 40(2): 1-9.
[14] 王友善, 王锋, 王浩. 超弹性本构模型在轮胎有限元分析中的应用[J]. 轮胎工业, 2009, 29(5): 277-282.
[15] ZHENG X, LI B.Study on sealing performance of packer rubber based on stress relaxation experiment[J]. Engineering Failure Analysis, 2021, 129: 105692.
[16] 钱胜, 陆益民, 杨咸启, 等. 橡胶材料超弹性本构模型选取及参数确定概述[J]. 橡胶科技(发展述评), 2018, 16(5): 5-10.
[17] 孙金风, 刘啟惠, 胡龙, 等. 真空密封圈气密性研究[J]. 真空科学与技术学报, 2020, 40(4): 322-326.
[18] 邵晓宙, 樊文欣, 王亚飞, 等. 金属橡胶Mooney-Rivlin修正模型试验[J]. 包装工程, 2021, 42(9): 135-140.
[19] 屠璐琼, 吴佳钉, 胡清波. 橡胶压缩Mooney-Rivilin本构模型参数拟合分析[J]. 噪声与振动控制, 2020, 40(1): 42-45.
[20] 李学斌, 冉菲, 王成刚, 等. 基于快开式高压容器的O形密封性能分析[J]. 液压气动与密封, 2018, 38(8): 75-79.
[1] WANG Gui-peng, HUANG Yu-xing, QU Shao-fen, GAO Guang-wei, XIE Yuan-hua, LIU Kun, BA De-chun. Study on Influence of the Change of Inlet and Outlet Angle of Impeller Blade of Vacuum Heat Treatment Furnace on Cooling Efficiency [J]. VACUUM, 2022, 59(5): 63-68.
[2] FANG Ming-yuan, WU Yue, ZHANG Yang, XU Zhong-xu. Simulation on Thermal Comfort of Astronaut Wearing Space Suit Under the Condition of Cabin Pressure Loss [J]. VACUUM, 2022, 59(4): 80-85.
[3] LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15.
[4] LI Zhuo-hui, LU Tong-shan, LIU Jia-lin, SUN Song-gang, DONG Dong, SHI Cheng-tian, LI Can-lun, ZHANG Rui. Approximate Calculation Method of Decompression Time in Rapid Decompression Environment Simulation System [J]. VACUUM, 2022, 59(3): 25-28.
[5] WANG Jun-wei, GONG Jie, DING Wen-jing, XU Jing-hao, GU Miao, ZHANG Li-ming. Numerical Simulation and Analysis of Spatial Rapid Decompression Process Based on Dynamic Grid [J]. VACUUM, 2022, 59(2): 32-37.
[6] REN Qi-chen, SUN Zhi-he, WANG Pei, HU Ju-li, LU Mao-lei, HUANG Qian. Finite Element Analysis of Vacuum Sealing Performance of O-ring [J]. VACUUM, 2021, 58(5): 37-41.
[7] MA Qiang, SUN Zu-lai, ZHANG Zhe-kui, MU Xin, LI Jian-jun, WANG Qiu-bo. Vibration Simulation Analysis of Ingot Withdrawing Mechanism of Large Power Vacuum Cold Hearth Furnace [J]. VACUUM, 2021, 58(5): 104-109.
[8] MA Yi-Gang, LI Zhi-hui. Application of Ultra-high and High Vacuum Technology [J]. VACUUM, 2021, 58(4): 98-102.
[9] LI Cheng-ming, SU Ning, LI Lin, YAO Wei-zhen, YANG Shao-yan. Flow Field Analysis and Large-Scale Material Growth in a Vertical Graded Varying Velocity Hydride Vapor Phase Epitaxy(HVPE) Reactor [J]. VACUUM, 2021, 58(2): 1-5.
[10] DING Xu, LUO Wen-yong, HUANG Wen-jun, WU Shu-jian, YU Zhi-qiang. Simulation and Application of PCVD Fiber Precast Rod Microwave System [J]. VACUUM, 2021, 58(2): 6-9.
[11] ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation [J]. VACUUM, 2021, 58(1): 10-14.
[12] ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow [J]. VACUUM, 2021, 58(1): 38-44.
[13] KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84.
[14] SU Tian-yi, ZHANG Zhi-jun, HAN Jing-xue. Numerical Simulation of Microwave Vacuum Drying Using Two-dimensional Axi-symmetric Model [J]. VACUUM, 2020, 57(4): 60-65.
[15] ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .