欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (4): 85-91.doi: 10.13385/j.cnki.vacuum.2024.04.16

• Vacuum Technology Application • Previous Articles     Next Articles

Application of Vacuum Technology in Advanced Ceramic Preparation

LIU Shi-meng1,2, ZHAO Huan-yu3, WANG Jie1, QIAO Zhong-lu1,2, JIN Wei-da1,2, ZHANG Ren-zhu1,2   

  1. 1. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China;
    2. Shenyang Huizhen Vacuum Technology Co., Ltd., Shenyang 110042, China;
    3. School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
  • Received:2024-05-09 Online:2024-07-25 Published:2024-07-29

Abstract: Advanced ceramic materials have unparalleled structural characteristics such as high hardness, high modulus, high temperature resistance, corrosion resistance, as well as excellent functional properties such as thermal, optical and electrical properties. Therefore, they have been increasingly applied in fields of aerospace, information technology, national defense and military industry, biomedicine, and new energy. The demand for high performance advanced ceramic materials has driven the development of preparation processes. The application of vacuum technology in ceramic forming and sintering technology can improve ceramic properties by influencing on the densification, the uniformity of composition, and the distribution of grain sizes. This study summarized the application of vacuum technology in various forming and sintering methods, and discussed the mechanism of the effects of vacuum atmosphere on improving ceramic properties. Finally, prospects are made for future research directions.

Key words: advanced ceramic, vacuum technology, forming, sintering

CLC Number:  TB32

[1] 谢志鹏, 李辰冉, 安迪, 等. 国际先进结构陶瓷研发及产业化应用发展状况[J]. 陶瓷学报, 2019, 40(4): 425-433.
[2] 翁世雯, 袁新林. 先进陶瓷材料在工业产品中的应用[J]. 2023, 12: 72-73.
[3] 工业和信息化部. 三部委关于印发“十四五”原材料工业发展规划的通知:工信部联规〔2021〕212号[EB/OL].(2021-12-21)[2024-05-05]. https://www.gov.cn/zhengce/zhengceku/2021-12/29/content_5665166.htm.
[4] 齐龙浩, 姜忠良. 精细陶瓷工艺学[M]. 北京:清华大学出版社, 2021: 148-211.
[5] 吕耀辉. Nd:YAG纳米粉体微结构调控及胶体化学性能研究[D]. 济南:山东大学, 2010.
[6] LYU Y H, ZHANG W, TAN J, et al.Dispersion of concentrated aqueous neodymia-yttria-alumina mixture with ammonium poly(acrylic acid) as dispersant[J]. Journal of Alloys and Compounds, 2011, 509(6): 3122-3127.
[7] LYU Y H, ZHANG W, LIU H, et al.Synthesis of nano-sized and highly sinterable Nd:YAG powders by the urea homogeneous precipitation method[J]. Powder Technology, 2012, 217: 140-147.
[8] 刘长霞. Al2O3基大型结构陶瓷导轨材料及其摩擦磨损性能研究[D]. 济南:山东大学, 2007.
[9] 吕子彬,海韵,吕金玉,等.陶瓷基片流延成型用浆料研究进展[J]. 武汉理工大学学报, 2021, 43(6): 7-14.
[10] 张海波, 谭划, 姜胜林. 先进陶瓷工艺学[M]. 武汉:华中科技大学出版社, 2023: 59-75.
[11] CHEN X Q, WU Y Q.Aqueous-based tape casting of multilayer transparent Nd:YAG ceramics[J]. Optical Materials, 2019, 89: 316-321.
[12] 赵前程, 江国健.水基流延成型制备LED用YAG:Ce荧光陶瓷薄膜及其性能[J]. 硅酸盐学报, 2018, 46(7): 987-993.
[13] 徐晗. 氮化硅结合碳化硅材料凝胶注模成型工艺研究[D]. 郑州:郑州大学, 2019.
[14] QIN X P, ZHOU G H, YANG Y, et al.Gelcasting of transparent YAG ceramics by a new gelling system[J]. Ceramics International, 2014, 40(8): 12745-12750.
[15] YAO Q, ZHANG L, CHEN H, et al.A novel gelcasting induction method for YAG transparent ceramic[J]. Ceramics International, 2021, 47(3): 4327-4332.
[16] 郑喜贵, 王桂录, 邵晨阳, 等. 激光/荧光陶瓷成型技术的研究进展[J]. 化学通报, 2024, 87(3): 290-299.
[17] GERMAN M R.Sintering: from empirical observations to scientific principles[M]. Waltham: Elsevier Butterworth Heinemann Inc., 2014: 116-148.
[18] RAHAMAN M N.Sintering of ceramics[M]. New York: CRC Press Inc., 2007: 1-45.
[19] 桑元华, 刘宏, 秦海明, 等. ND:YAG透明激光陶瓷的研究进展及相关问题[J].功能材料, 2011, 42(增刊2):212-217.
[20] CHEN L, MA Z Z, CHEN J, et al.MgF2-doped MgO-YAG:Ce composite ceramics prepared by pressureless vacuum sintering for laser-driven lighting[J]. Journal of Luminescence, 2024, 266: 120301.
[21] LIN Y Q, HUANG J Q, XIAO H, et al.Eu3+ doped (Y0.75Sc0.25)2O3 red-emitting ceramics with excellent photoluminescence properties for LEDs[J]. Journal of Luminescence, 2024, 269: 120489.
[22] WANG Y B, HUANG X Y, CHENG Z Q, et al.Fabrication and luminescence properties of Al2O3-Ce:LuAG composite phosphor ceramics for solid-state laser lighting[J]. Optical Materials, 2024, 147: 114628.
[23] IKESUE A, KINOSHITA T, KAMATA K, et al.Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-statelasers[J]. Journal of the American Ceramic Society, 1995, 78(4): 1033-1040.
[24] SONG Y H, JI E K, JEONG B W, et al.Design of laser-driven high-efficiency Al2O3/YAG:Ce3+ ceramic converter for automotive lighting: Fabrication, luminous emittance, and tunable color space[J]. Dyes and Pigments, 2017, 139: 688-692.
[25] HUANG P, ZHOU B Y, ZHENG Q,et al.Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG: Ce composite ceramics for high luminous efficiency white light-emitting diodes[J].Advanced Materials, 2019, 32(1).1905951
[26] 庞淇瑞, 李淑星, 解荣军. 激光照明用荧光陶瓷研究进展[J]. 硅酸盐学报, 2024, 52(3): 906-923.
[27] CAI K F, MÜLLER E, DRAŠAR C, et al. Preparation and thermoelectric properties of Al-doped ZnO ceramics[J]. Materials Science and Engineering: B, 2003, 104(1/2): 45-48.
[28] CHEN M, HE J, ZHANG Y, et al.Densification and grain growth behaviour of high-purity MgO ceramics by hot-pressing[J]. Ceramics International, 2017, 43(2): 1775-1780.
[29] PANG Q, LIU W, SHEN J, et al.Improved optical properties of BN powder shielded Ce:YAG ceramics prepared by hot pressing[J]. Ceramics International, 2022, 48(16): 23821-23827.
[30] 韩翠柳, 沈学峰, 王衍, 等. 放电等离子烧结新技术新材料研究现状与发展趋势[J]. 航空制造技术, 2019, 62(22): 43-51.
[31] 张启龙, 杨辉. 功能陶瓷材料与器件/中国战略性新兴产业[M]. 北京:中国铁道出版社. 2017: 49.
[32] ZHANG Y F, SONG A J, MA D Q, et al.Sintering characteristics and grain growth behavior of MgO nanopowders by spark plasma sintering[J]. Journal of Alloys and Compounds, 2014, 608: 304-310.
[33] GHANIZADEH S, GRASSO S, RAMANUJAM P, et al.Improved transparency and hardness in α-alumina ceramics fabricated by high-pressure SPS of nanopowders[J]. Ceramics International, 2017, 43(1): 275-281.
[34] XIE J X, MAO X J, LI X 看, et al. Influence of moisture absorption on the synthesis and properties of Y2O3-MgO nanocomposites[J]. Ceramics International, 2017, 43(1): 40-44.
[35] KRUK A.Fabrication of MgO high transparent ceramics by arc plasma synthesis[J]. Optical Materials, 2018, 84: 360-366.
[36] LU N, HE G, YANG Z C, et al.Fabrication and densification mechanism of MgO/Graphene composites with LiF as additive[J]. Scripta Materialia, 2020, 174: 91-94.
[37] PENG Z J, LUO X D, XIE Z P, et al.Sintering behavior and mechanical properties of spark plasma sintering SiO2-MgO ceramics[J]. Ceramics International, 2020, 46(3): 2585-2591.
[38] KOSYANOV D Y, VORNOVSKIKH A A, SHICHALIN O O, et al.Reactive SPS of Al2O3-RE:YAG (RE = Ce; Ce+Gd) composite ceramic phosphors[J]. Journal of Advanced Ceramics, 2023, 12(5): 1015-1032.
[39] 颜邓伊, 许文举, 吉利, 等.高熵陶瓷材料的研究进展[J]. 材料保护, 2023, 56(8): 35-49.
[40] CASTLE E, CSANÁDI T, GRASSO S, et al. Processing and properties of high-entropy ultra-high temperature carbides[J]. Scientific Reports, 2018, 8:8609.
[41] ZHOU J, ZHANG J Y, ZHANG F Y, et al.High-entropy carbide: a novel class of multicomponent ceramics[J]. Ceramics International, 2018, 44(17): 22014-22018.
[42] WANG Z, LI Z T, ZHAO S J, et al.High-entropy carbide ceramics: a perspective review[J]. Tungsten, 2021, 3: 131-142.
[1] HU Hao, LI Kai, LIU Hong-tao, SHAO Qing, HAN Tian, YU Miao, LIU Hang, LI Hao-chen. Application of Vacuum Technology in High-temperature Superconducting Electrodynamic Suspension Transportation System [J]. VACUUM, 2024, 61(3): 105-109.
[2] XING Yin-long, WU Jie-feng, PEI Shi-lun, LIU Zhi-hong, LI Bo, LIU Zhen-fei, MA Jian-guo. Study on the Forming Technology of Boat-shaped High Frequency Cavity Shell [J]. VACUUM, 2023, 60(6): 78-83.
[3] LEI Cheng-shuai, CHEN Guo-xin, LU Xing-yu, ZHOU Li-na, HUANG Ju, LIU Hong-wei. The Application and Development of Vacuum Technology in Production Process of High-quality Steels [J]. VACUUM, 2023, 60(2): 14-19.
[4] ZHAO Jian-ye, FU Xiu-hua. Application of Small PLC Network Based on Siemens S7 Communication in Cluster Control System for Glove Box-sintering Furnace [J]. VACUUM, 2023, 60(1): 80-85.
[5] LIU Yan-wen, MENG Ming-feng, ZHANG Xiao-lin, ZHU Hong, WANG Guo-jian, ZHAO Heng-bang, WANG Xiao-xia, ZHANG Zhi-qiang. Preparation of Molten Heater Assembly [J]. VACUUM, 2022, 59(4): 76-79.
[6] DAI Chen, NAN Hai-juan, SHENG Xiao-yang, CONG Lun-gang, LI Cai-xia. Modification of the Control System of Vacuum Sintering Furnace for Porous Metal Materials [J]. VACUUM, 2021, 58(4): 63-66.
[7] E Dong-mei. Application of Vacuum Technology in Aerospace [J]. VACUUM, 2021, 58(3): 77-81.
[8] WU Ai-rong, ZHANG Feng, MA Qiang, XI Xiao-jing. Design of Control System for Multi Chamber Tunnel Continuous Vacuum Sintering Furnace and Heat Treatment Furnace [J]. VACUUM, 2021, 58(1): 78-81.
[9] LI Xue-feng, MA Qiang, LI Xiao-ming, WANG Zhi-rong, WU Ai-rong, LIU Cheng. Application of Differential Pressure Carrier Gas Dewax in Vacuum Dewaxing Sintering Furnace [J]. VACUUM, 2020, 57(4): 32-35.
[10] WANG Zhi-rong, MA Qiang, LONG Guo-liang, LI Xue-feng, LIU Cheng. Development and Application of Multi-Chamber Tunnel Continuous Vacuum Sintering Furnace and Heat Treatment Furnace [J]. VACUUM, 2019, 56(5): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .