欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (6): 78-83.doi: 10.13385/j.cnki.vacuum.2023.06.13

• Vacuum Acquisition System • Previous Articles     Next Articles

Study on the Forming Technology of Boat-shaped High Frequency Cavity Shell

XING Yin-long1,2, WU Jie-feng1,3, PEI Shi-lun4, LIU Zhi-hong1, LI Bo1,3, LIU Zhen-fei3,5, MA Jian-guo1,5   

  1. 1. Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, China;
    2. University of Science and Technology of China, Hefei 230026, China;
    3. Hefei Juneng Electric Physics High Technology Development Co., Ltd., Hefei 230036, China;
    4. China Institute of Atomic Energy, Beijing 102413, China;
    5. Huainan New Energy Research Center, Huainan 232000, China
  • Received:2023-01-30 Online:2023-11-25 Published:2023-11-27

Abstract: The high-power proton beam accelerator is widely used in basic physics, nuclear industry, home safety and other fields, and the high-power waveguide RF cavity is an extremely important component. The ship-shaped RF cavity has the highest no-load Q value and shunt impedance, which is a good choice for GeV proton beam accelerator. For the manufacture of ship-shaped copper RF cavity, the main difficulty lies in the forming of the complex contour shell of the cavity,thus the detailed forming process research is developed in this work. Through the PAM-STAMP 2G simulation software, the die forming numerical simulation for the complex contour shell of the high frequency cavity is carried out, and the thinning amount, residual stress and forming rebound of the shell during the elliptical arc forming process are simulated respectively, which provides a theoretical basis for the actual die forming. The high frequency cavity elliptical shell forming mold designed based on the simulation results has successfully implemented the actual molding of the elliptical arc.

Key words: boat-shaped RF cavity, complex contour shell, die forming, numerical simulation, PAM-STAMP 2G

CLC Number:  TB77;TB74

[1] ZHANG T Y, LI M, LV Y L, et al.52 kW CW proton beam production by CYCIAE-100 and general design of high average power circular accelerator[J]. Nuclear Instruments and Methods in Physical Research Section B, 2020, 468: 60-64.
[2] CHEN W Q, SUN K X, ZHENG R S, et al.Cancer incidence and mortality in China,2014[J]. Chinese Journal of Cancer Research, 2018, 30(1): 1-12.
[3] SCHNEIDER U, LOMAX A, PEMLER P, et al.The impact of IMRT and proton radio therapy on secondary cancer incidence[J]. Strahlentherapie und Onkologie, 2006, 182: 647-652.
[4] 刘世耀. 质子与重离子治疗及其装置[M]. 北京:科学出版社, 2016.
[5] 韩榕城. 质子调强放射治疗不确定性的相关技术研究[D].上海:中国科学院大学(中国科学院上海应用物理研究所), 2020.
[6] SHI D Y, HU P, YING L.Comparative study of ductile fracture prediction of 22MnB5 steel in hot stamping process[J]. International Journal of Advanced Manufacturing Technology, 2016, 84(5-8): 895-906.
[7] HU P, SHI D Y, YING L, et al.The finite element analysis of ductile damage during hot stamping of 22MnB5 steel[J]. Materials & Design, 2015, 69: 141-152.
[8] MORGAN M S.The stamping out of process analysis in econometrics[M]// EDWARD E. Appraising economic theories: studies in the methodology of research programs. Utrecht: Brookfield Publishing Co., 1991.
[9] LI H Z, WU X, LI G Y.Prediction of forming limit diagrams for 22MnB5 in hot stamping process[J]. Journal of Materials Engineering & Performance, 2013, 22(8): 2131-2140.
[10] 刘理, 刘土光, 李天匀,等. 材料应变率对圆柱壳轴向冲击屈曲的影响[J]. 振动与冲击,2000, 19(3): 60-62.
[11] 李泷杲. 金属板料成形有限元模拟基础- PAM- STAMP2G(Autostamp)[M]. 北京: 北京航空航天大学出版社, 2008.
[12] ZHANG Z F, QU R T, LIU Z Q.Advances in fracture behavior and strength theory of metallic glasses[J]. Acta Metallurgica Sinica, 2016, 52(10): 1171-1182.
[13] CHRISTENSEN R M.Lamination theory for the strength of fiber composite materials[J]. Journal of Applied Mechanics, 2017, 84(7): 071007.
[14] LARIN S N, PLATONOV V I, LEONOVA E V.Study of isothermal pneumatic forming of high-strength materials subject to energy theory of short-term creep and damage[J]. Key Engineering Materials, 2017, 746: 36-47.
[15] LIEOU C K C, DAUB E G, ECKE R E, et al. Slow dynamics and strength recovery in unconsolidated granular earth materials: a mechanistic theory[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 7573-7583.
[16] 林金保, 王渠东, 刘满平,等. 往复挤压变形ZK60镁合金应变分布的有限元数值模拟[J]. 中国有色金属学报(英文版),2012,22(8):1902-1906.
[17] 傅华, 徐洪. 大直径06Cr13 马氏体不锈复合板压力容器的制造[J]. 电焊机, 2010,40(2): 64-69.
[18] 修磊. 大型复杂轮廓真空室焊接模拟及残余应力消除方法研究[D]. 合肥:中国科学技术大学, 2017.
[19] PANTHI S K, RAMAKRISHNAN N, AHMED M, et al.Finite element analysis of sheet metal bending process to predict the springback[J]. Materials & Design, 2010, 31(2): 657-662.
[20] SCHULTZ H.Electron beam welding[M]. Abington: Abington Publishing, 1994: 53-55.
[21] HUANG B, CHEN X, PANG S Y, et al.A three- dimensional model of coupling dynamics of keyhole and weld pool during electron beam welding[J]. International Journal of Heat & Mass Transfer, 2017, 115: 159-173.
[1] LI Ping-chuan, XU Li, ZHAO Jie, ZHANG Fan, XIONG Si-wei, JIAN Yi, ZHANG Zheng-hao, TANG De-li. Numerical Simulation and Experimental Research on Miniaturized Anode Layer Thruster [J]. VACUUM, 2023, 60(4): 36-41.
[2] WANG Gui-peng, HUANG Yu-xing, QU Shao-fen, GAO Guang-wei, XIE Yuan-hua, LIU Kun, BA De-chun. Study on Influence of the Change of Inlet and Outlet Angle of Impeller Blade of Vacuum Heat Treatment Furnace on Cooling Efficiency [J]. VACUUM, 2022, 59(5): 63-68.
[3] FANG Ming-yuan, WU Yue, ZHANG Yang, XU Zhong-xu. Simulation on Thermal Comfort of Astronaut Wearing Space Suit Under the Condition of Cabin Pressure Loss [J]. VACUUM, 2022, 59(4): 80-85.
[4] LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15.
[5] WANG Jun-wei, GONG Jie, DING Wen-jing, XU Jing-hao, GU Miao, ZHANG Li-ming. Numerical Simulation and Analysis of Spatial Rapid Decompression Process Based on Dynamic Grid [J]. VACUUM, 2022, 59(2): 32-37.
[6] LI Cheng-ming, SU Ning, LI Lin, YAO Wei-zhen, YANG Shao-yan. Flow Field Analysis and Large-Scale Material Growth in a Vertical Graded Varying Velocity Hydride Vapor Phase Epitaxy(HVPE) Reactor [J]. VACUUM, 2021, 58(2): 1-5.
[7] ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow [J]. VACUUM, 2021, 58(1): 38-44.
[8] KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84.
[9] ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59.
[10] ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79.
[11] DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58.
[12] CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58.
[13] LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38.
[14] WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .