欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (3): 61-66.doi: 10.13385/j.cnki.vacuum.2020.03.13

• Vacuum Acquisition System • Previous Articles     Next Articles

Analysis of Cavity Pressure Change for a Vacuum Electronic Device During in-Orbit Power-on

CHEN Lian, DONG Meng, LIU Guo-ting, ZHAO Lan, ZHANG Rui-fang, LI Ya-li, SUN Dong-hua, Zhang Rui-nian, CHENG Yong-jun   

  1. Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
  • Received:2019-05-20 Published:2020-06-18

Abstract: For space applications, the power-on process of a vacuum electronic device is influenced by the interactions of its electrical, thermal and pressure properties. In some cases, such devices fail to switch on normally at the first time of power-on. This paper analyzed the pumping mechanism of the heating cylinder for a vacuum electronic device and established the pressure change model within the cylinder. It is determined that the primary influences are the diameter of the outlet channel of the heating cable and the inner material outgassing of the heating cavity. On this basis, simulation tests for assessing the amount of material outgassing and iterative calculation of the pressure variation in the cavity for typical vacuum electronic product were conducted. The results show that the significant increase of the outgassing rate from the interior of the cavity and the uncertainty of the diameter of the outlet channel of the heating cable are the main reasons for the occasionally failure of this type of device to power on at the beginning.

Key words: vacuum electronic device, pressure change, pumping process analysis, in-orbit power on

CLC Number: 

  • TB75
[1] 崔敬忠, 杨坦, 张玲, 等. 真空环境下铷钟性能的研究[J]. 真空与低温, 2016, 22(5): 271-274.
[2] 陈江, 成大鹏, 马寅光, 等. 一种磁选态铯束管的真空设计方法[J]. 真空科学与技术学报, 2018, 38(1): 16-19.
[3] 张兆镗. 真空微波电子器件的发展态势与前途[J]. 真空电子技术, 2019(3): 1-7.
[4] Wang D L, Li J J, Wang X H.Measurement of gas permeation through packaging materials of OLED by mass spectrometry[C]. 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies. Dalian, China, 2010, 1-6.
[5] Choi B D, Kakkad R.Enhancement of Solid-phase Crystallization Kinetics of Amorphous Silicon by Annealing in a High-pressure H2O Ambien[J]. Journal of the Korean Physical Society, 2009, 55(1): 1-4.
[6] 刘晋红, 张方辉. OLED薄膜干燥剂的制备及其对OLED的影响[J], 发光学报, 2017, 38(1): 76-84.
[7] 林洋, 司长峰, 彭崔云, 等. 环境湿度有机电致发光二极管功能材料的影响[J]. 功能材料, 2017, 48(1): 01109-01113.
[8] Hall J L, Yavrouian A H, Kerzhanovich V V.Technology development for a long duration, mid-cloud level Venus balloon[J]. Advances in Space Research, 2011, 48(7): 1238-1247.
[9] 袁慧宇, 周军欧, 阳佳佳, 等. 存储态真空电子器件渗气分析[C]. 中国电子学会真空电子学分会第十九届学术年会. 安徽黄山, 2013, 248-251.
[10] Cachafeiro H, Fdez. de Arevalo L, Vinuesa R, et al. Analysis of vacuum evolution inside Solar Receiver Tubes[J]. Energy Procedia. 69(2015): 289-298.
[11] 孙冬花, 陈联, 赵澜, 等. 小型半密封器件腔体压力变化测量方法研究[J], 真空, 2019, 56(7): 10-14.
[12] 隋文, 张弛, 李建昌. 用于OLED试验的小型真空制备系统设计[J]. 真空, 2019, 56(3): 6-9.
[13] 刘帅, 贾小林, 孙大伟. GNSS星载原子钟性能评估[J]. 武汉大学?信息科学学报, 2017, 42(2): 277-283.
[14] 杨天社, 李肖瑛, 王小乐, 等. 基于特征提取的导航卫星铷钟异常早期检测方法[C]. 第八届中国卫星导航学术年会, 南京, 2017, 1-4.
[15] GB/T1031-2009 产品几何级数规范(GPS)表面结构轮廓法表面粗糙度参数及其数值[S].
[16] 达道安主编. 真空设计手册(第3版)[M]. 北京: 国防科技工业出版社, 2004, 116-1131.
[1] LIU Yan-wen, TIAN Hong, LU Yu-xin, SHI Wen-qi, ZHU Hong, LI Fen, LI Yun, GU Bing, WANG Xiao-xia. Photocathode Used as Microwave Vacuum Electronic Devices [J]. VACUUM, 2019, 56(6): 7-11.
[2] SUN Dong-hua, CHEN Lian, ZHAO Lan, ZHANG Rui-fang, DING Dong, ZHANG Rui-nian. Research on Detection Methods of Cavity Pressure Change of Semitight Devices [J]. VACUUM, 2019, 56(4): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .