VACUUM ›› 2020, Vol. 57 ›› Issue (3): 73-79.doi: 10.13385/j.cnki.vacuum.2020.03.15
• 3D Printing Technology • Previous Articles Next Articles
ZHAO Yu-hui1,2,3, ZHAO Ji-bin1,2, WANG Zhi-guo1,2, WANG Fu-yu1,3
CLC Number:
[1] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013(4): 1-4. [2] Arcella F G, Froes F H.Producing titanium aerospace components from powder using laser forming[J]. JOM, 2000, 52: 28-30. [3] 王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展及挑战[J]. 中国激光, 2009, 36(12): 3204-3209. [4] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(5): 105-107. [5] 王传琦. 机械振动作用下激光熔覆镍基合金涂层凝固组织及应力控制研究[D]. 昆明: 昆明理工大学, 2013, 37-59. [6] Liu J J, Liu Z D.An experimental study on synthesizing TiC-TiB2-Ni composite coating using electro-thermal explosion ultra-high speed spraying method[J]. Materials Letters, 2010, 64: 684-687. [7] Kicheol K, Gyuyeol B, Byungdoo K, et al.Electrical and mechanical properties of multi-walled carbon nanotube reinforced Al composite coatings fabricated by high velocity oxygen fuel spraying[J]. Surface & Coatings Technology, 2012, 206: 4060-4067. [8] Li Z J, Hu Z F, Li J.Synthesis and optical properties of three-dimensional nanowall ZnO film prepared by atmospheric pressure chemical vapor deposition[J]. Applied Surface Science, 2012, 258: 10175-10179. [9] Liu H X, Xu Q, Zhang X W.Residual stress analysis of TIN film fabricated by plasma immersion ion implantation and deposition process[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 297: 1-6. [10] 张超. 基于电子散斑的毛坯内应力场在线测量技术研究[D]. 上海: 上海交通大学, 2012, 11-22. [11] 章凌, 宋宏伟, 虞钢. 基于量纲分析的激光直接成形残余应力控制[J]. 力学与实践, 2009, 31(4): 37-40. [12] 王福雨, 刘伟军, 赵宇辉, 等. 复杂薄壁零件激光快速成形过程的热力耦合场数值模拟[J]. 机械工程学报, 2013, 49(5): 191-197. [13] 李俐群, 王宪, 曲劲宇, 等. 激光熔化沉积AlSi10Mg及气孔对力学性能的影响[J]. 中国表面工程, 2019, 32(3): 109-114. [14] Bian L, Thompson S M, Shamsaei N.Mechanical Properties and Microstructural Features of Direct Laser-Deposited Ti-6Al-4V[J]. JOM, 2015, 67(3): 629-638. [15] Gu T, Chen B, Tan C, et al.Microstructure evolution and mechanical properties of laser additive manufacturing of high strength Al-Cu-Mg alloy[J]. Optics & Laser Technology, 2019, 112: 140-150. [16] Rottwinkel B, Nölke C, Kaierle S, et al.Laser Cladding for Crack Repair of CMSX-4 Single-Crystalline Turbine Parts[J]. Lasers in Manufacturing and Materials Processing, 2017, 4(1): 13-23. [17] Avik S, Nhiem T, Aaqil R, et al.Angle defines attachment: Switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting[J]. Materials & Design, 2018, 154: 326-339. |
[1] | ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo. Research on Warp Distortion of Inconel 625 Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(2): 88-93. |
[2] | DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58. |
[3] | LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38. |
[4] | CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58. |
[5] | WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48. |
|