欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (3): 18-23.doi: 10.13385/j.cnki.vacuum.2023.03.04

• Thin Film • Previous Articles     Next Articles

Structure and Luminescence Properties of Zn1-xSbxO Films Grown at Different Temperatures

ZHU Jian-hua, PAN Jing, YUE Jian-ming, HAO Li-ping, ZHI Peng-wei, JIA Zhe   

  1. Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China
  • Received:2022-11-02 Online:2023-05-25 Published:2023-05-30

Abstract: Sb-doped ZnO targets with different ratios were prepared by solid-state reaction, and Zn1-xSbxO thin films were prepared on Si(100) substrate by pulsed laser deposition(PLD) method. The structure and properties of the films were characterized by XRD and photoluminescence(PL), and the effects of Sb doping concentration and growth temperature on the crystalline quality and luminescence properties of the films were investigated. The results show that compared with the PL spectra of pure ZnO, it is found that the ZnSbO film exhibit UV peaks,and the intensity of all emission peaks increase relatively with the increasing of Sb concentration. For Zn0.98Sb0.02O thin films, the UV and blue light emission intensities of the films are changed by different substrate growth temperatures, and the film has the best crystallization quality and the strongest emission front at 500℃. For Zn0.98Sb0.02O thin film grown at 500℃,When the wavelength of the excitation light source changes from 325nm to 300nm, the peak position shifts red and the intensity ratio of UV peak to blue front changed from 1∶3 to 12∶1. According to the experimental results, light-emitting devices with different wavelength and different intensity can be prepared through changing the doping concentration of Sb, the growth temperature, and the length of the excitation light source.

Key words: PLD method, Zn1-xSbxO film, photoluminescence, defect complex SbZn-2VZn, non-radiation complex

CLC Number:  TN304.2;O484.1;O484.4+1

[1] SUO B, WU W W, QIN Y, et al.High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates[J]. Advanced Functional Materials, 2011, 21(23): 4464-4469.<br />
[2] CHEN Y L, WANG L J, WANG W Z, et al.Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu<sub>2</sub>-<sub>x</sub>Se core-shell nanowire arrays fabricated by ion-replacement method[J]. Applied Catalysis B: Environmental, 2017, 209: 110-117.<br />
[3] HUMAYUN Q, KASHIF M, HASHIM U.Structural, optical, electrical, and photoresponse properties of postannealed Sn-doped ZnO nanorods[J]. Journal of Nanomaterials, 2013,2013: 792930.<br />
[4] PARADOWSKA K M, PRŹEZDZIECKA E, PŁACZEK-POPKO E. Effect of annealing on photoluminescence and Raman scattering of Sb-doped ZnO epitaxial layers grown on a-Al<sub>2</sub>O<sub>3</sub>[J]. Journal of Alloys and Compounds, 2019, 774: 1160-1167.<br />
[5] OUYANG W X, TENG F, JIANG M M, et al.ZnO film UV photodetector with enhanced performance:heterojunction with CdMoO<sub>4</sub> microplates and the hot electron injection effect of Au nanoparticles[J]. Small, 2017, 13(39): 1702177.<br />
[6] YU K S, SHI J Y, ZHANG Z L, et al.Synthesis, characterization, and photocatalysis of ZnO and Er-doped ZnO[J]. Journal of Nanomaterials, 2013, 2013: 372951.<br />
[7] 陈星辉, 唐颖慧, 王加强, 等. 衬底温度对氧化锌薄膜微结构及光学性能的影响[J]. 人工晶体学报, 2021, 50(9):1681-1687.<br />
[8] 方向明, 曾值, 高世勇, 等. ZnO纳米锥丛林阵列的低温制备和光催化性能[J]. 材料研究学报, 2018, 32(12): 945-950.<br />
[9] VANALAKAR S A, MALI S S, SURYAWANSHI M P, et a1. Photoluminescence quenching of a CdS nanoparticles/ZnO nanorods core-shell heterogeneous film and its improved photovohaic performance[J]. Optical Materials, 2014, 37: 766-772.<br />
[10] LIANG J K, SU H L, KUO C L, et al.Structural,optical and electrical aproperties of electrodeposited Sb-doped ZnO nanorod arrays[J]. Electrochimica Acta, 2014, 125:124-132.<br />
[11] SIREGAR N, SIRAIT M, MOTLAN. Synthesis and optical properties of Sb-doped ZnO thin film by sol-gel spin coating method[J]. Journal of Physics: Conference Series, 2022, 2193: 012063.<br />
[12] CAGLAR Y, CAGLAR M, ILICAN S. XRD, SEM, XPS studies of Sb doped ZnO films and electrical properties of its based Schottky diodes[J]. Optik, 2018,164:424-432.<br />
[13] 冯秋菊, 石博, 李昀铮, 等. 单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能[J]. 物理学报, 2020, 69(3): 273-279.<br />
[14] YAO Z R, TANG K, XU Y, et al.Synthesis, characterization and UV photodetector application of Sb-doped ZnO nanowires[J]. Journal of Luminescence, 2020, 221: 117025.<br />
[15] LI B C, LI Z C, PENG D C, et al.Sb-doped ZnO ceramics: NTC thermistors with high temperature sensitivity and electrical stability[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(19):24296-24307.<br />
[16] 邰佳丽. 脉冲激光沉积法制备Mg<sub>x</sub>Zn<sub>1-</sub><sub>x</sub>O<sub>1-</sub><sub>y</sub>S<sub>y</sub>四元合金薄膜及其性能研究[D]. 武汉: 湖北大学, 2014.<br />
[17] TIAN S Q, ZENG D W, XIE C S, et al.Direct experimental evidence for Sb<sub>Zn</sub>-2V<sub>Zn</sub> complex as the importmant defect in the Sb-doped ZnO nanocrystals[J]. Materials Letters, 2014,116: 363-366.<br />
[18] 曹唱. P型ZnO纳米材料的压电效应及其光电化学性能的研究[D]. 海南: 海南大学, 2019.<br />
[19] PAN L, WANG S B, XIE J W, et al.Construction TiO<sub>2</sub> p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation[J]. Nano Energy, 2016, 28: 296-303.<br />
[20] 徐彭寿, 孙玉明, 施朝淑, 等. ZnO及其缺陷的电子结构[J]. 中国科学(A辑), 2001, 31(4): 359-365.<br />
[21] 王尘, 张宇超, 范伟航, 等. 氧气退火温度对室温脉冲激光沉积氧化镓薄膜特性的影响[J]. 光学学报, 2022, 42(8): 255-262.<br />
[22] 王南南, 李继文, 刘伟, 等. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 25-31.
[1] LIAO Guo-jin, YAN Shao-feng, YI Deng-li, DAI Xiao-chun. The Luminescent Property of Al2O3:Ce MFRMS Thin Films Sputtered by Optimal Design of Experiments [J]. VACUUM, 2022, 59(1): 24-28.
[2] LI Ru-yong, DUAN Ping, CUI Min, WANG Ji-you, YUAN An-juan, DENG Jin-xiang. Effect of post-annealing on Mg doped Ga2O3 films deposited by RF magnetron sputtering [J]. VACUUM, 2019, 56(3): 37-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .