VACUUM ›› 2020, Vol. 57 ›› Issue (3): 42-48.doi: 10.13385/j.cnki.vacuum.2020.03.10
• Measurement and Control • Previous Articles Next Articles
SHI Wen-qi1,3, ZHANG Lian-zheng1, LU Yu-xin2, TIAN Hong1, ZHU Hong1, ZHAO Heng-bang1, WANG Xiao-xia1, LIU Yan-wen1
CLC Number:
[1] 刘燕文, 张耿民, 刘惟敏, 等. 激光驱动的钠钾锑光电阴极的光电发射特性[J]. 北京大学学报(自然科学版), 1996, (1):96-102. [2] Sommer A H.Brief-History of Photoemissive Materials[J]. P Soc Photo-Opt Ins, 1993, 2022(2-17). [3] Sommer A H.光电发射材料制备、特性与应用[M]. 北京:科学出版社,1979: 1-4. [4] 钱长炎. 赫兹对光电效应的研究及其历史意义[J]. 自然杂志, 2003, (2):117-122. [5] 罗平. 赫兹对光电效应的发现及其影响[J]. 巢湖学院学报, 2003, (3):32-34+47. [6] 蒋长荣, 刘树勇. 爱因斯坦和光电效应[J]. 首都师范大学学报(自然科学版), 2005, (4):32-37. [7] 王晓耘. 超高速光电管中反射式银氧铯光电阴极的研究[J]. 光电子技术, 2004, (2):81-3+8. [8] 刘燕文,张耿民,刘惟敏,等. 激光驱动的钠钾锑光电阴极的稳定性研究[J]. 中国激光, 1996, (3):255-9. [9] Guemez U J, Fiolhais M.Relativistic description of the photoelectric effect[J]. Am. J. Phys., 2018, 86(11):825-830. [10] Mccarroll W H, Paff R J, Sommer A H.Role of Cs in(Cs)Na2KSb(S-20) Multialkali Photocathode[J]. J. Appl. Phys., 1971, 42(2):569. [11] Sommer A.H. Relationship between Photoelectric and Secondary Electron Emission, with Special Reference to Ag-O-Cs(S-1) Photocathode[J]. J. Appl. Phys., 1971, 42(2):567. [12] Sommer A.H. Stability of Photocathodes[J]. Appl Optics, 1973, 12(1):90-92. [13] Sommer A.J. , Leidheiser H. Effect of Alkali-Metal Hydroxides on the Dissolution Behavior of a Zinc Phosphate Conversion Coating on Steel and Pertinence to Cathodic Delamination[J]. Corrosion, 1987, 43(11):661-665. [14] 李飙, 任艺, 常本康. 热退火对GaN阴极光电发射性能的影响[J]. 电子器件, 2019, (1):1-4. [15] 李朝木, 朱宝元. 锑钾铷铯光电阴极的特性研究[J]. 真空与低温, 1993, (2):65-67. [16] Niu J, Zhang Y J, Chang B K, et al.Influence of exponential doping structure on the performance of GaAs photocathodes[J]. Appl. Optics., 2009, 48(29):5445-5450. [17] Liu Y W, et al.The high field enhancement of photoemission fome Na2KSb photo-cathodes[J]. Nucl. Instr. meth. phys. Res. 1996, A376:146-147. [18] 李晓峰, 冯刘, 陆强. 多碱阴极光电发射理论研究[J]. 光子学报, 2013, 42(10):1176-1181. [19] Dolizy P, Luca O D, Deloron M A.锑、钠、钾、铯型多碱锑化物的光电发射[J]. 红外技术, 1985, (1):50-53. [20] 付小倩. GaN基光电阴极的结构设计与制备研究[D]. 南京: 南京理工大学, 2015. [21] 谢运涛, 孙晓泉, 王玺, 等. 多碱光电阴极饱和机理研究[J]. 国防科技大学学报, 2018, 40(4):28-34. [22] 吴全德. 银氧铯和多碱光电阴极的若干问题[J]. 红外技术, 1979, (4):1-25. [23] 吴全德. 关于银氧铯光电阴极的发射机理[J]. 科学通报, 1978, (7):410-414. [24] 史久德. 复蒸银对银氧铯光电阴极特性的改进[J]. 真空科学与技术, 1992, (6):437-440. [25] 常本康. NEA GaN和GaAs光电阴极的比较[J]. 红外技术, 2017, 39(12):1073-1077. [26] 王旺平, 马建一. 近红外响应的Ⅲ-V族半导体光电阴极材料及工艺[J]. 光电子技术, 2013, 33(3):194-7+207. [27] Antonova L I, Denisov V P, Isayeva N A.Nea GaAs-Sb-Cs-O-Photocathode[J]. Radiotekh Elektron+, 1988, 33(11):2446-2448. [28] 李飙, 任艺, 常本康, 等. 负电子亲和势GaN阴极光电发射机理研究[J]. 材料导报, 2016, 30(8):37-40. [29] 马力. NEA GaN光电阴极光电发射特性研究[D]. 南京: 南京理工大学, 2013. [30] Chang B K, Liu W L, Fu R G, et al.Spectral response and surface layer thickness of GaAs:Cs-O negative electron affinity photo-cathode[J]. Apoc 2001:Asia-Pacific Optical and Wireless Communications:Optoelectronics, Materials, and Devices for Communications, 2001, 4580(632-641). [31] 赵静. 透射式GaAs光电阴极的光学与光电发射性能研究[D]. 南京: 南京理工大学, 2013. [32] 赵静, 余辉龙, 刘伟伟, 等. 砷化镓光电阴极光谱响应与吸收率关系分析[J]. 物理学报,2017,66(22):319-325. [33] Wu C I, Kahn A.Negative electron affinity and electron emission at cesiated GaN and AlN surfaces[J]. Appl. Surf. Sci., 2000,162(250-255). [34] 乔建良,常本康,钱芸生, 等. 负电子亲和势GaN光电阴极光谱响应特性研究[J]. 物理学报, 2010, 59(5):3577-3582. [35] Ulmer M P, WESSELS B W, Shahedipour F, et al.Progress in the fabrication of GaN photo-cathodes[J]. Photodetectors:Materials and Devices Vi, 2001, 4288(246-253). [36] Bates R, Campbell M, Davia C, et al.Developments in GaAs pixel detectors for X-ray imaging[C]. 1997 Ieee Nuclear Science Symposium-Conference Record, Vols 1 & 2, 1998: 534-540. [37] Machuca F, Liu Z, Sun Y, et al.Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes[J]. J. Vac. Sci. Technol. B, 2003, 21(4):1863-1869. [38] 李飙, 任艺, 常本康. 梯度掺杂结构GaN光电阴极的稳定性[J]. 中国光学, 2018, 11(4):677-683. [39] Qiao J L, Chang B K, Qian Y S, et al.Study on photoemission mechanism for negative electron affinity GaN vacuum electron source[J]. Phys Status Solidi C, 2012, 9(1). [40] Qiao J L, Li X J, Niu J, et al.Quantum Yield of Reflection Mode Varied Doping GaN Photocathode[J]. Matec. Web Conf., 2016, 67. [41] Yang Z, Chang BK, Zou J, et al.Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode[J]. Appl. Optics,2007,46(28):7035-7039. [42] 王晓晖.纤锌矿结构GaN(0001)面的光电发射性能研究[D]. 南京: 南京理工大学,2013. |
No related articles found! |
|