欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (4): 77-84.doi: 10.13385/j.cnki.vacuum.2020.04.16

• 3D Printing Technology • Previous Articles     Next Articles

Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process

KONG Yuan1, ZHANG Hai-ou1, GAO Jian-cheng2, CHEN Xi1, WANG Gui-lan3   

  1. 1. School of Mechanical Science and Engineering of Hua zhong University of Science and Technology, Wuhan 430074, China;
    2. School of Material Science and Engineering of Wuhan University of Technology, Wuhan 430070, China;
    3. School of Material Science and Engineering of Hua zhong University of Science and Technology, Wuhan 430074, China
  • Received:2020-06-10 Online:2020-07-25 Published:2020-07-23

Abstract: For machining metal parts by laser metal melting deposition method, if propose a new method to understand the relationship between the macro processing parameters and the evolution of internal micro structure during the laser metal melting deposition process, the micro structure of the samples can be controlled and the mechanical properties will be thus greatly improved. In this paper, a multi-scale and couple physical field was built by using a double time steps method, and the simulation result was validated by processing experiment using the same processing parameters. At last, a good result was obtained, which is proved to have the guiding significance for selecting LMDS process.

Key words: laser metal melting deposition, numerical simulation, multi-scale-couple physical field model, titanium alloys

CLC Number: 

  • TG146.2TF124
[1] 王华明. 金属材料激光表面改性与高性能金属零件激光金属直接成形技术研究进展[J]. 航空学报, 2002, 23(5): 473-478.
[2] 王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展与挑战(邀请论文)[J]. 中国激光, 2009, 36(12): 3204-3209.
[3] 颜永年, 张人佶. 21世纪的重要先进制造技术--快速原型技术. 世界制造技术与装备市场, 2001(2): 68-71.
[4] 颜永年, 张人佶, 林峰. 激光快速成形技术的新进展. 新技术新工艺, 2006(9): 7-9.
[5] 杨叔子, 吴波. 先进制造技术及其发展趋势. 机械工程学报, 2003, 39(10): 73-78.
[6] 杨叔子, 吴波, 李斌. 再论先进制造技术及其发展趋势. 机械工程学报, 2006, 42(1): 1-5.
[7] Y. Y. L.姚振强, 王飞, 刘刚. 先进激光制造技术研究新进展. 机械工程学报, 2003, 39(12): 57-61.
[8] 李鹏. 基于激光熔覆的三维金属零件激光直接制造技术研究 [D]. 华中科技大学, 2005.
[9] 来佑彬. 金属激光直接沉积增材制造工艺研究[D]. 沈阳: 中国科学院沈阳自动化研究所博士学位论文, 2015.
[10] 王福雨. 钛合金复杂零件增材制造工艺的数值模拟[D]. 沈阳: 中国科学院沈阳自动化研究所博士学位论文, 2015.
[11] 安晓龙, 吕云卓, 覃作祥, 等. 同轴送粉金属激光3D打印熔池流动、成分分布以及组织生长数值模拟的研究进展[J]. 材料导报, 2018, 32(11): 3743-3753.
[12] Liu Z, Qi H.Numerical simulation of transport phenomena for a double-layer laser powder deposition of single-crystal superalloy[J]. Metallurgical and materials transactions A, 2014, 45(4): 1903-1915.
[13] Liu Z, Qi H, Jiang L.Control of crystal orientation and continuous growth through inclination of coaxial nozzle in laser powder deposition of singlecrystal superalloy[J]. Journal of materials processing technology, 2016, 230: 177-186.
[14] Lee Y.Simulation of laser additive manufacturing and its applications[D]. The Ohio State University, 2015.
[15] 顾冬冬, 戴冬华, 夏木健, 等. 金属构件选区激光熔化增材制造控形与控性的跨尺度物理学机制[J]. 南京航空航天大学学报, 2017, 49(5), 645-652.
[16] 孔源. 激光快速成形方法相关技术研究[D]. 沈阳: 中国科学院大学博士后出站报告, 2016.
[1] ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59.
[2] ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79.
[3] DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58.
[4] LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38.
[5] CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58.
[6] WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .