欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (2): 17-20.doi: 10.13385/j.cnki.vacuum.2022.02.04

• Measurement and Control • Previous Articles     Next Articles

Application Research of High Precision Gradient Temperature Control System

SUN Cheng-kai, LIU Hai-jing, LU Tong-shan, LI Can-lun, LI Zhuo-hui, GAO Ze-tian, WANG Guo-fang   

  1. Shanghai Institute of Spacecraft Equipment, Shanghai 200240, China
  • Received:2021-05-21 Online:2022-03-25 Published:2022-04-14

Abstract: In order to meet the requirement of gradient temperature control in the thermal vacuum test of a certain type of aerospace products, a set of high precision gradient temperature control system was designed. The system is composed of heat sink, heater and supporting temperature control system, etc., which can meet the gradient temperature control requirements of products such as load, and the temperature control precision can reach ±0.2℃. This paper introduces the design of the temperature control structure, the frame of the temperature control structure and the PID temperature control principle of the system. The system is used to test the gradient temperature control in product zones, and it runs stably and reliably in the test. The experimental results show that the system can meet the requirements of gradient temperature control in product zones, and the temperature control accuracy is high.

Key words: thermal vacuum test, gradient temperature control, PID control

CLC Number: 

  • V416.5
[1] 滕健, 叶海峰, 汪韩送, 等. 一种热真空试验设备的研制[J]. 低温技术, 2016, 44(12): 16-21.
[2] 陈立涛, 张伟. 热真空试验系统温度均匀度试验研究[J]. 环境技术, 2016, 34(3): 21-23.
[3] 杨冬甫. 热真空试验技术与设备发展概述[J]. 中国仪器仪表, 2008(9): 75-78.
[4] DONG H Y, SONG H, LI Q, et al.The vacuum system of the China spallation neutron source[J]. Vacuum, 2018, 154: 75-81.
[5] 祁松松, 徐晓辉, 刘家林, 等. 热真空试验设备控温热沉设计分析[J]. 真空, 2020, 57(2): 62-65.
[6] 张蕊, 景加荣, 季琨, 等. 宽温区高均匀度热沉调温系统设计与实现[J]. 低温工程, 2018(6): 37-40.
[7] ASHWINDRAN S N,AZIZUDDIN A A.Design of small thermal vacuum chamber for 125-U CubeSat staellite[J]. IOP Conference Series:Materials Science and Engineering[C]. 2019(469): 012108
[8] 刘强. 对热真空环境模拟试验设备设计中有关问题的讨论[J]. 真空与低温, 2006, 12(4): 238-245.
[9] 黄光萍. 热真空设备中与温度相关的试验技术探讨[J]. 环境技术, 2021, 2(1): 21-26.
[10] 黄本诚, 徐加宽. 载人航天器真空热试验技术探讨[J]. 航天器环境工程, 2001(4): 1-7.
[11] 何异舟. 小卫星技术与产业发展研究[J]. 电信网技术, 2017(10): 29-33.
[12] 徐志明. 小卫星高精度热控方法研究[D]. 合肥: 中国科学技术大学, 2018.
[13] 承磊. 液氮/冷氦气双冷源高低温箱试验和模拟研究[D]. 上海: 上海交通大学, 2015.
[14] 晏亭太. 智能自适应PID/PD控制器设计及仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[15] 刘敏层, 杨子毛, 李阳, 等. 一种优化的PID算法在伺服跟踪系统中的应用[J]. 电气传动, 2016, 46(7): 16-19.
[16] 彭光东, 齐晓军, 陈丽, 等. KM5A 空间环境试验设备研制[J]. 航天器环境工程, 2010, 27(4): 485-488.
[17] 赵晶辉, 杨建斌, 刘伟成, 等. 板式热沉温度均匀性仿真研究[J]. 真空与低温, 2018, 24(5): 321-326.
[18] 李荣, 吕刚. 模糊控制的热真空环境模拟设备研究[J]. 电气传动自动化, 2009, 31(5): 26-28.
[19] 简亚彬, 张春元, 丁文静, 等. 调温热沉设备的状态空间法仿真设计[J]. 航天器环境工程, 2008, 25(4): 81-84.
[20] 柯受全. 卫星环境工程和模拟试验[M]. 北京: 中国宇航出版社, 2009.
[1] LIU Hai-jing, LI Can-lun, LU Tong-shan, SUN Cheng-kai, LI Zhuo-hui, QI Song-song, LIU Jia-lin. Development and Analysis of Large-diameter and Ultra-long U-shaped Gas Pool [J]. VACUUM, 2021, 58(6): 55-58.
[2] XU Li, WU Ze-ming, LIU Xu, LI hao. Boiler Temperature Control System Based on Fuzzy Neural Network [J]. VACUUM, 2021, 58(4): 77-80.
[3] QI Song-song, XU Xiao-hui, LIU Jia-lin, ZHANG Rui, LI Can-lun, DONG De-sheng, SHI Cheng-tian. Design and Analysis of Temperature Control Heat Sink for Thermal Vacuum Test Equipment [J]. VACUUM, 2020, 57(2): 62-65.
[4] WANG Fei, JING Jia-rong, LI Can-lun, QI Xiao-jun. Development of vacuum thermal environment test system for deep space detector [J]. VACUUM, 2019, 56(3): 16-20.
[5] Wu Yue, E Dong-mei, Du Peng, Guo Zi-yin, Chen Shi-yu, Wang Jing. The leak detection method of the joint of spacecraft capsule [J]. VACUUM, 2018, 55(6): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[3] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[4] SONG Qing-zhu, ZHANG Zhe-kui, SUN Zu-lai, E Dong-mei. Progress in large-scale titanium alloy casting technology - vacuum arc skull investment casting equipment[J]. VACUUM, 2018, 55(5): 58 -61 .
[5] RUAN Qing-dong, PU Shi-hao, CHEN Chang, WEI Yu-ping. Development of acceleration power supply for a new type high energy ion implantation system[J]. VACUUM, 2018, 55(6): 14 -18 .
[6] WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology[J]. VACUUM, 2018, 55(6): 45 -48 .
[7] LI Zhong-ren, MING Yue, ZHU Yi-ming. Power calculation of resistance heating vacuum high temperature graphitization furnace[J]. VACUUM, 2018, 55(6): 73 -75 .
[8] YIN Sha-sha, PENG Run-ling, WEI Yan, CAO Wei, WANG Ning. Preparation of nano-MoS2 powders by vacuum freeze-drying[J]. VACUUM, 2018, 55(6): 80 -83 .
[9] CHEN Bo, YANG Fei, LI Jian-chang. Studies on fatigue failure of flexible thin film materials[J]. VACUUM, 2019, 56(1): 20 -26 .
[10] . [J]. VACUUM, 2019, 56(2): 78 -80 .