欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2022, Vol. 59 ›› Issue (1): 33-39.doi: 10.13385/j.cnki.vacuum.2022.01.07

• 薄膜 • 上一篇    下一篇

β-Ga2O3/p-SiNWs异质结光学特性与电学性质研究

张杰, 邓金祥, 徐智洋, 孔乐, 段苹, 王晓蕾, 孟军华, 李瑞东, 张晓霞, 孙旭鹏, 杨子淑   

  1. 北京工业大学理学部,北京 100124
  • 收稿日期:2021-01-08 出版日期:2022-01-25 发布日期:2022-01-27
  • 通讯作者: 邓金祥,教授,博士。
  • 作者简介:张杰(1996-),男,山西省长治市人,硕士生。
  • 基金资助:
    *北京市自然科学基金(No.4192016)

Study on Optical and Electrical Properties of β-Ga2O3/p-SiNWs Heterojunctions

ZHANG Jie, DENG Jin-xiang, XU Zhi-yang, KONG Le, DUAN Ping, WANG Xiao-lei, MENG Jun-hua, LI Rui-dong, ZHANG Xiao-xia, SUN Xu-peng, YANG Zi-shu   

  1. Department of Science, Beijing University of Technology, Beijing 100124, China
  • Received:2021-01-08 Online:2022-01-25 Published:2022-01-27

摘要: 氧化镓(Ga2O3)是一种宽禁带的半导体材料,超大的禁带宽度(4.9eV)、较高击穿电场强度和高热稳定性,使其成为一种很有应用前景的材料。本文以p型硅纳线阵列(p-SiNWs)为衬底,使用磁控溅射法制备了β-Ga2O3/p-SiNWs异质结,探究了其光学与电学性质。与纯Si相比,p-SiNWs表现出优良的“陷光”特性,其反射系数约为纯Si的1/6,且随着p-SiNWs长度的增加,反射系数逐渐降低。室温下光致发光光谱(PL)测试发现,异质结在551nm附近出现典型的绿色发射峰。β-Ga2O3/p-SiNWs异质结具有明显的整流特性,在V=1.40V时其整流系数高达1724,随着p-SiNWs长度增加异质结理想因子逐渐增加,最佳理性因子为1.98。通过计算 logI-logV图对其电荷传输机制进行了探究。退火可以提高β-Ga2O3薄膜的结晶度,从而提高异质结的电学特性。

关键词: 氧化镓, 硅纳米线阵列, 异质结, 光学性质, 电学性质

Abstract: As a band gap semiconductor material, Ga2O3 is considered to be a promising material owing to its ultra-wide band gap(4.9eV), high breakdown field intensity and excellent thermal stability. β-Ga2O3/p-SiNWs heterojunctions were fabricated by RF magnetron sputtering of β-Ga2O3 layers onto the p-SiNWs substrates. The optical and electrical properties of heterojunctions were studied. The p-SiNWS showed excellent“light trapping” characteristics with the reflection coefficient to be 1/6 of the planar Si, which decreased gradually with the increase of the length of substrate nanowires. Photoluminescence spectroscopy(PL) tests showed that all the samples exhibited a typical green emission peak near 551nm at room temperature. β-Ga2O3/p-SiNWs heterojunctions showed obvious rectifying characteristics with rectifying coefficient of 1724 at V=1.40V. The ideal factor of heterojunctions increased gradually with the increase of length of substrate nanowires, and the optimal factor value is 1.98. The charge transfer mechanism of heterojunctions was investigated by logI-logV curve. The crystallinity of the β-Ga2O3 film was enhanced by annealing,which also improved the electrical properties of the heterojunctions.

Key words: Ga2O3, SiNWs, heterojunction, optical property, electrical property

中图分类号: 

  • O475
[1] DU X, MEI Z, LIU Z, et al.Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors[J]. Advanced Materials, 2009, 21(45): 4625-4630.
[2] GUO D Y, WU Z P, AN Y H, et al.Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors[J]. Applied Physics Letters, 2014, 105(2): 031912.
[3] ZHENG W, LIN R C, ZHU Y M, et al.Vacuum ultraviolet photodetection in two-dimensional oxides[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20696-20702.
[4] FANG X S, HU L F, HUO K F, et al.New ultraviolet photodetector based on individual Nb2O5 nanobelts[J]. Advanced Functional Materials, 2011, 21(20): 3907-3915.
[5] GUO D Y, LIU H, LI P G, et al.Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1619-1628.
[6] XIAO Y F, LIU W, LIU C, et al.Large-area vertically stacked MoTe2/β-Ga2O3 p-n heterojunction realized by PVP/PVA assisted transfer[J]. Applied Surface Science, 2020, 530: 147276.
[7] WANG Y H, YANG Z, LI H, et al.Ultrasensitive flexible solar-blind photodetectors based on graphene/amorphous Ga2O3 Van Der Waals Heterojunctions[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47714-47720.
[8] ATILGAN A, YILDIZ A, HARMANCI U, et al.β-Ga2O3 nanoflakes/p-Si heterojunction self-powered photodiodes[J]. Materials Today Communications, 2020, 24: 101105.
[9] YU J G, YU M, WANG Z, et al.Improved photoresponse performance of self-powered β-GaO/NiO heterojunction UV photodetector by surface plasmonic effect of Pt nanoparticles[J]. IEEE Transactions on Electron devices, 2020, 67(8): 3199-3204.
[10] HUANG Z, GEYER N, WERNER P, et al.Metal-assisted chemical etching of silicon: A review.[J]. Advanced Materials, 2011, 23(2): 285-308.
[11] ZHANG M L, PENG K Q, FAN X, et al.Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching[J]. Journal of Physical Chemistry C, 2008, 112(12): 4444-4450.
[12] CHANG S W, CHUANG V P, BOLES S T, et al.Metal-catalyzed etching of vertically aligned polysilicon and amorphous silicon nanowire arrays by etching direction confinement[J]. Advanced Functional Materials, 2010, 20(24): 4364-4370.
[13] JANGIR R, PORWAL S, TIWARI P, et al.Correlation between surface modification and photoluminescence properties of β-Ga2O3 nanostructures[J]. Aip Advances, 2016, 6(3): 1241-9328.
[14] LI S F, JIAO S J, WANG D B, et al. The influence of sputtering power on the structural,morphological and optical properties of beta-Ga2O3 thin films[J]. Journal of Alloys and Compounds, 2018, 753: 186-191.14
[15] QI X, SONG Y, SHENG Y, et al.Controllable synthesis and luminescence properties of TiO2: Eu3+ nanorods, nanoparticles and submicrospheres by hydrothermal method[J]. Optical Materials, 2014, 38: 193-197.
[16] YAN S, WAN L, LI Z, et al.Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO[J]. Chemical Communications, 2010, 46(34): 6388-6390.
[17] YANG H Q, SHI R Y, YU J, et al.Single-crystalline β-Ga2O3 hexagonal nanodisks: Synthesis, growth mechanism, and photocatalytic activities[J]. The Journal of Physical Chemistry C, 2009, 113(52): 21548-21554.
[18] CAO L, LI M K, YANG Z, et al.Synthesis and characterization of dentate-shaped β-Ga2O3 nano/microbelts via a simple method[J]. Applied Physics A, 2008, 91(3): 415-419.
[19] WU X C, SONG W H, HUANG W D, et al.Crystalline gallium oxide nanowires: Intensive blue light emitters[J]. Chemical Physics Letters, 2000, 328(1): 5-9.
[20] LAURENT, BINET, DIDIER, et al. Origin of the blue luminescence of β-Ga2O3[J]. Journal of Physics and Chemistry of Solids, 1998, 59(8): 1241-1249.
[21] KIM J K, CHO K, KIM T Y, et al.p-n heterojunction diodes[J]. Scientific Reports, 2016, 6: 36775.
[22] AYDIN M E, TUERUET A.The electrical characteristics of Sn/methyl-red/p-type Si/Al contacts[J]. Microelectronic Engineering, 2007, 84(12): 2875-2882.
[23] CHEN L, DENG J X, GAO H L, et al.Organometallic hybrid perovskites: structural, optical characteristic and application in Schottky diode[J]. Journal of Materials Science Materials in Electronics, 2016, 27(5): 4275-4280.
[24] GHOSH R, BASAK D.Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction[J]. Applied Physics Letters, 2007, 90(24): 243106.
[25] YE J D, GU S L, ZHU S M, et al.Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions[J]. Applied Physics Letters, 2006, 88(18): 3257.
[26] DUTTA M, BASAK D. p-ZnO/n-Si heterojunction: Sol-gel fabrication,photoresponse properties, and transport mechanism[J]. Applied Physics Letters, 2008, 92(21): 383.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .