欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2022, Vol. 59 ›› Issue (5): 55-62.doi: 10.13385/j.cnki.vacuum.2022.05.10

• 真空获得与设备 • 上一篇    下一篇

超声速运行时管道列车激波特性分析*

黄尊地, 伊严严, 常宁   

  1. 五邑大学轨道交通学院,广东 江门 529020
  • 收稿日期:2022-01-11 出版日期:2022-09-25 发布日期:2022-09-28
  • 通讯作者: 常宁,硕士,讲师。
  • 作者简介:黄尊地(1987-),男,山东省济宁市人,博士,副教授。
  • 基金资助:
    *国家重点研发计划项目“先进轨道交通”重点专项(2018YFB1201701-07),广东省基础与应用基础研究基金联合基金—青年基金项目(2019A1515111052)

Analysis on Shock Wave Characteristics of Supersonic Train Running in Tube

HUANG Zun-di, YI Yan-yan, CHANG Ning   

  1. School of Rail Transportation, Wuyi University, Jiangmen 529020, China
  • Received:2022-01-11 Online:2022-09-25 Published:2022-09-28

摘要: 空气已经成为高速列车进一步提速的关键制约因素之一,为发展下一代更高速的交通运输系统,低真空管道和超高速列车结合的创新性交通运输系统构想得以提出和发展。本文建立管道列车二维计算模型,基于验证的网格和湍流模型开展超声速列车运行管道激波特性分析。结果表明:超声速列车运行时,列车前方激波以正激波形式形成壅塞区段向前推进;正激波位置随运行时间前移,压力激增的位置同步前移,但激波前后的压升比值基本不变;运行时间和运行马赫数影响壅塞区段长度;激波会在管道和列车车体之间以及尾流区域进行多次马赫反射形成激波串,随着运行时间的增长,管道车体之间激波减弱,车尾激波及反射激波强度增强。

关键词: 超声速, 管道列车, 激波特性, 正激波, 激波反射

Abstract: Air has become one of the key constraints for the further acceleration of high-speed trains.In order to develop the next generation of higher-speed transportation systems, an innovative transportation system concept combining low-vacuum pipes and ultra-high-speed trains has been proposed and developed. In this paper, a two-dimensional calculation model of the tube train is established, and the shock wave characteristics of the supersonic train running in tube are analyzed based on the verified grid and turbulence model. It is concluded that when the supersonic train is running, the shock wave in front of the train forms a congested section forward in the form of a normal shock wave. The position of the normal shock wave moves forward with the running time, and the position of the pressure surge moves forward synchronously, but the pressure rise ratio before and after the shock wave is basically unchanged. The running time and the running Mach number affect the length of the congested section. The shock wave will undergo multiple Mach reflections between the tube and the train body and in the wake area to form a shock wave train. As the running time increases, the shock wave between the tube and train body weakens, and the intensity of the shock wave and reflected shock wave at the rear of the train is strengthened.

Key words: supersonic speed, tube train, shock wave characteristic, normal shock wave, shock wave reflection

中图分类号: 

  • U171
[1] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17(4): 30-41.
[2] KIM T K, KIM K H, KWON H B.Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99: 1187-1196.
[3] KIM D W, KIM T H, KIM H D.A study on characteristics of shock train inside a shock tube[J]. Theoretical and Applied Mechanics Letters, 2017, 7: 366-371.
[4] ZHOU P, ZHANG J Y, LI T, et al.Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 61-70.
[5] ZHOU P, ZHANG J Y.Aerothermal mechanisms induced by the super high-speed evacuated tube maglev train[J]. Vacuum, 2020, 173: 1-9.
[6] 周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86-97.
[7] 周鹏, 李田, 张继业, 等. 真空管道超级列车气动热效应[J]. 机械工程学报, 2020, 56(8): 190-199.
[8] 张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182-190.
[9] NIU J Q, SUI Y, YU Q J, et al.Numerical study on the impact of Mach number on the coupling effect of aerodynamic heating and aerodynamic pressure caused by a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 100-111.
[10] NIU J Q, SUI Y, YU Q J, et al.Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube[J]. Aerospace Science and Technology, 2020, 105: 1-12.
[11] SUI Y, NIU J Q, RICCO P, et al.Impact of vacuum degree on the aerodynamics of a high-speed train capsule running in a tube[J]. International Journal of Heat and Fluid Flow, 2021, 88: 1-14.
[12] TSIEN H S.Superaerodynamics,mechanics of rarefield gases[J]. Journal of Aerodynamic Science, 1964, 13(12): 653-664.
[13] 计光华, 计洪苗. 微流动及其元器件[M]. 北京: 高等教育出版社, 2009.
[14] 刘加利, 张继业, 张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报, 2013, 49(22): 137-143.
[15] 刘加利, 张继业, 张卫华. 真空管道高速列车气动阻力及系统参数设计[J]. 真空科学与技术学报, 2014, 34(1): 10-15.
[16] 黄尊地, 梁习锋, 常宁. 真空管道交通列车外流场仿真算法分析[J]. 工程热物理学报, 2018, 39(6): 1244-1250.
[17] 黄尊地, 梁习锋, 常宁. 真空管道交通列车气动阻力数值分析[J]. 机械工程学报, 2019, 55(8): 165-172.
[18] 黄尊地, 常宁, 杨铁牛. 低真空管道内侧壁面压强变化规律研究[J]. 真空科学与技术学报, 2020, 40(12): 1182-1190.
[19] DHARAVATH M, MANNA P, CHAKRABORTY D.Thermochemical exploration of hydrogen combustion in generic scramjet combustor[J]. Aerospace Science and Technology, 2013, 24(1): 264-274.
[20] XUE R, WEI X G, HE G Q, et al.Effect of parallel-jet addition on the shock train characteristics in a central-strut isolator by detached eddy simulation[J]. International Journal of Heat and Mass Transfer, 2017, 114: 1159-1168.
[21] GENIN F, MENON S.Simulation of turbulent mixing behind a strut injector in supersonic flow[J]. AIAA Journal, 2010, 48(3): 526-539.
[1] 宋嘉源, 李田, 张继业, 张卫华. 管道断面外形对亚音速真空管道磁浮系统气动特性的影响*[J]. 真空, 2022, 59(1): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .