欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (2): 51-56.doi: 10.13385/j.cnki.vacuum.2023.02.09

• 真空获得与设备 • 上一篇    下一篇

液态锂中氘脱附特性分析*

李琳1,2, 孟献才3, 元京升1,2, 毕海林4, 左桂忠1, 胡建生1   

  1. 1.中国科学院合肥物质科学研究院 等离子体物理研究所,安徽 合肥 230031;
    2.中国科学技术大学,安徽 合肥 230026;
    3.合肥综合性国家科学中心能源研究院 安徽省能源实验室,安徽 合肥 230031;
    4.合肥工业大学,安徽 合肥 230009
  • 收稿日期:2022-07-30 出版日期:2023-03-25 发布日期:2023-03-27
  • 通讯作者: 左桂忠,研究员;胡建生,研究员。
  • 作者简介:李琳(1987-),女,安徽省阜阳市人,博士生。
  • 基金资助:
    *国家重点研发计划项目(2022YFE03130000); 中科院青年交叉团队项目

Characteristic Analysis of Deuterium Desorption in Liquid Lithium

LI Lin1,2, MENG Xian-cai3, YUAN Jing-sheng1,2, BI Hai-lin4, ZUO Gui-zhong1, HU Jian-sheng1   

  1. 1. Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
    2. University of Science and Technology of China, Hefei 230026, China;
    3. Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China;
    4. Hefei University of Technology, Hefei 230009, China
  • Received:2022-07-30 Online:2023-03-25 Published:2023-03-27

摘要: 锂化壁处理/液态锂第一壁可为托卡马克装置提供良好壁条件,但存在燃料滞留问题,为解决这一问题,需进一步研究氢同位素在液态锂中的脱附特性。本文设计了液态锂中气体吸附/脱附系统,开展了氘气在液态锂中的吸附实验,并分析了其脱附过程,通过采用微调阀调整进气速率的方式标定不同氘气分压下的系统抽速,计算了热脱附过程中气体的抽除量。结果表明,氘气在液态锂中的脱附峰温度在481℃附近,脱附的氘气仅有约36%被抽气系统抽除,剩余部分被壁面冷凝的锂重新吸附。该研究可为深入分析氘在液态锂中的脱附行为奠定良好基础,为未来解决液态锂中的燃料回收问题提供技术支持。

关键词: 托卡马克, 锂, 氢同位素, 氘, 脱附

Abstract: Lithium coating or liquid lithium provides good wall condition for Tokamak, but it has the problem of fuel retention. In order to solve this problem, it is necessary to focus on the desorption properties of hydrogen isotopes in liquid lithium. In this paper, the adsorption/desorption system of liquid lithium was designed, the absorption experiment of deuterium in liquid lithium was carried out and the desorption process was analyzed. The system pumping speed under different partial pressures of deuterium was calibrated by using a fine-tuning valve to adjust the air inlet rate, and the amount of gas pumped from the system during desorption process was calculated. The results show that the desorption peak temperature of deuterium is around 481℃, only about 36% of the desorbed deuterium gas was pumped out by the extraction system, and the rest of them was re-adsorbed by lithium condensed on the wall. This study lays a good foundation for further analysis of the desorption behavior of deuterium in liquid lithium, and provides technical support for solving the problem of fuel recovery in liquid lithium in the future.

Key words: Tokamak, lithium, hydrogen isotope, deuterium, desorption

中图分类号: 

  • TB79
[1] LINSMEIER C, RIETH M, AKTAA J, et al.Development of advanced high heat flux and plasma-facing materials[J]. Nuclear Fusion, 2017, 57: 092007.
[2] TANABE T, NODA N, NAKAMURA H. Review of high Z materials for PSI applications[J]. Journal of Nuclear Materials, 1992, 196-198: 11-27.
[3] MANSFIELD D K, HILL K W, STRACHAN J D, et al.Enhancement of Tokamak fusion test reactor performance by lithium conditioning[J]. Physics of Plasmas, 1996, 3(5): 1892-1897.
[4] MAAN A, OSTROWSKI E, KAITA R, et al.Plasma facing component characterization and correlation with plasma conditions in lithium Tokamak experiment-β[J]. IEEE Transactions on Plasma Science, 2020, 6(48): 1463-1467.
[5] APICELLA M L, APRUZZESE G, MAZZITELLI G, et al.Lithization of the FTU Tokamak with a critical amount of lithium injection[J]. Plasma Physics and Controlled Fusion, 2012, 54: 035001.
[6] KAITA R, LUCIA M, ALLIAN J P, et al.Hydrogen retention in lithium on metallic walls from “in vacuo” analysis in LTX and implications for high-Z plasma-facing components in NSTX-U[J]. Fusion Engineering and Design, 2017, 117: 135-139.
[7] LI C, ZHAO D Y, HU Z H, et al.Characterization of deuterium retention and co-deposition of fuel with lithium on the divertor tile of EAST using laser induced breakdown spectroscopy[J]. Journal of Nuclear Materials, 2015, 463: 915-918.
[8] PISAREV A, MOSHKUNOV K, VIZGALOV I, et al.Deuterium trapping in liquid lithium irradiated by deuterium plasma[J]. Journal of Nuclear Materials, 2013, 438: 1076-1078.
[9] ONO M, MAJESKI R, JAWORSKI M A, et al.Liquid lithium loop system to solve challenging technology issues for fusion power plant[J]. Nuclear Fusion, 2017, 57: 116056.
[10] CHRISTENSON M, PANICI D, MOYNIHAN C, et al.A study on hydrogen absorption and dissolution in liquid lithium[J]. Nuclear Fusion, 2019, 59: 026011.
[11] YAKIMOVICH K A, BIRYUKOVA T.Thermodynamic properties of Li-LiH(LiD, LiT) systems. The phase diagram[J]. Open Journal of Physical Chemistry, 2012, 2: 141-146.
[12] MARTIN-ROJO A B, OYARZABAL E, TABARES F L. Laboratory studies of H retention and LiH formation in liquid lithium[J]. Fusion Engineering and Design, 2014, 89(12): 2915-2918.
[13] OYARZABAL E, MARTIN-ROJO A B, TABARES F L. Laboratory experiments of uptake and release of hydrogen isotopes in liquid lithium[J]. Journal of Nuclear Materials, 2015, 463: 1173-1176.
[14] LYUBLINSKI I E, VERTKOV A V, EVTIKHIN V A.Application of lithium in systems of fusion reactors.1.Physical and chemical properties of lithium[J]. Plasma Devices and Operations, 2009, 17(1): 42-72.
[15] VELECKIS E, YONCO R M, MARONI V A.Solubility of lithium deuteride in liquid lithium[J]. Journal of the Less Common Metals, 1977, 55(1): 85-92.
[16] LI L, ZHANG D H, MENG X C, et al.Effect of N2 on release behavior of D2 in liquid lithium[J]. Nuclear Materials and Energy, 2021, 28: 101049.
[17] SKINNER C H, SULLENBERGER R, KOEL B E, et al.Plasma facing surface composition during NSTX Li experiments[J]. Journal of Nuclear Materials, 2013, 438: 647-650.
[18] FURUYAMA Y, ITO K, DOHI S, et al. Characteristics of lithium thin films under deuterium ion implantation[J]. Journal of Nuclear Materials, 2003, 313-316: 288-291.
[19] 丘克强, 段文军, 陈启元. 金属在真空状态下的蒸发速率[J]. 有色金属工程, 2002, 54(2): 48-52.
[20] 夏体锐, 杨洪广, 占勤, 等. 材料中氢同位素行为热脱附谱实验方法研究[J]. 原子能科学技术, 2012, 46(增刊1): 510-516.
[21] 傅青伟, 程龙, 王军, 等. 钨中氘氦行为的高分辨热脱附谱实验方法研究[J]. 原子能科学技术, 2018, 52(6): 1049-1055.
[1] 黄化岩, 刘芳. 基于电子诱导脱附的气体解吸实验装置研究[J]. 真空, 2019, 56(2): 31-36.
[2] 陈鑫, 陈金龙, 朱根良, 徐红兵, 付猷昆. HL-2M氦回收纯化系统建设[J]. 真空, 2019, 56(2): 16-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .