真空 ›› 2023, Vol. 60 ›› Issue (2): 51-56.doi: 10.13385/j.cnki.vacuum.2023.02.09
李琳1,2, 孟献才3, 元京升1,2, 毕海林4, 左桂忠1, 胡建生1
LI Lin1,2, MENG Xian-cai3, YUAN Jing-sheng1,2, BI Hai-lin4, ZUO Gui-zhong1, HU Jian-sheng1
摘要: 锂化壁处理/液态锂第一壁可为托卡马克装置提供良好壁条件,但存在燃料滞留问题,为解决这一问题,需进一步研究氢同位素在液态锂中的脱附特性。本文设计了液态锂中气体吸附/脱附系统,开展了氘气在液态锂中的吸附实验,并分析了其脱附过程,通过采用微调阀调整进气速率的方式标定不同氘气分压下的系统抽速,计算了热脱附过程中气体的抽除量。结果表明,氘气在液态锂中的脱附峰温度在481℃附近,脱附的氘气仅有约36%被抽气系统抽除,剩余部分被壁面冷凝的锂重新吸附。该研究可为深入分析氘在液态锂中的脱附行为奠定良好基础,为未来解决液态锂中的燃料回收问题提供技术支持。
中图分类号:
[1] LINSMEIER C, RIETH M, AKTAA J, et al.Development of advanced high heat flux and plasma-facing materials[J]. Nuclear Fusion, 2017, 57: 092007. [2] TANABE T, NODA N, NAKAMURA H. Review of high Z materials for PSI applications[J]. Journal of Nuclear Materials, 1992, 196-198: 11-27. [3] MANSFIELD D K, HILL K W, STRACHAN J D, et al.Enhancement of Tokamak fusion test reactor performance by lithium conditioning[J]. Physics of Plasmas, 1996, 3(5): 1892-1897. [4] MAAN A, OSTROWSKI E, KAITA R, et al.Plasma facing component characterization and correlation with plasma conditions in lithium Tokamak experiment-β[J]. IEEE Transactions on Plasma Science, 2020, 6(48): 1463-1467. [5] APICELLA M L, APRUZZESE G, MAZZITELLI G, et al.Lithization of the FTU Tokamak with a critical amount of lithium injection[J]. Plasma Physics and Controlled Fusion, 2012, 54: 035001. [6] KAITA R, LUCIA M, ALLIAN J P, et al.Hydrogen retention in lithium on metallic walls from “in vacuo” analysis in LTX and implications for high-Z plasma-facing components in NSTX-U[J]. Fusion Engineering and Design, 2017, 117: 135-139. [7] LI C, ZHAO D Y, HU Z H, et al.Characterization of deuterium retention and co-deposition of fuel with lithium on the divertor tile of EAST using laser induced breakdown spectroscopy[J]. Journal of Nuclear Materials, 2015, 463: 915-918. [8] PISAREV A, MOSHKUNOV K, VIZGALOV I, et al.Deuterium trapping in liquid lithium irradiated by deuterium plasma[J]. Journal of Nuclear Materials, 2013, 438: 1076-1078. [9] ONO M, MAJESKI R, JAWORSKI M A, et al.Liquid lithium loop system to solve challenging technology issues for fusion power plant[J]. Nuclear Fusion, 2017, 57: 116056. [10] CHRISTENSON M, PANICI D, MOYNIHAN C, et al.A study on hydrogen absorption and dissolution in liquid lithium[J]. Nuclear Fusion, 2019, 59: 026011. [11] YAKIMOVICH K A, BIRYUKOVA T.Thermodynamic properties of Li-LiH(LiD, LiT) systems. The phase diagram[J]. Open Journal of Physical Chemistry, 2012, 2: 141-146. [12] MARTIN-ROJO A B, OYARZABAL E, TABARES F L. Laboratory studies of H retention and LiH formation in liquid lithium[J]. Fusion Engineering and Design, 2014, 89(12): 2915-2918. [13] OYARZABAL E, MARTIN-ROJO A B, TABARES F L. Laboratory experiments of uptake and release of hydrogen isotopes in liquid lithium[J]. Journal of Nuclear Materials, 2015, 463: 1173-1176. [14] LYUBLINSKI I E, VERTKOV A V, EVTIKHIN V A.Application of lithium in systems of fusion reactors.1.Physical and chemical properties of lithium[J]. Plasma Devices and Operations, 2009, 17(1): 42-72. [15] VELECKIS E, YONCO R M, MARONI V A.Solubility of lithium deuteride in liquid lithium[J]. Journal of the Less Common Metals, 1977, 55(1): 85-92. [16] LI L, ZHANG D H, MENG X C, et al.Effect of N2 on release behavior of D2 in liquid lithium[J]. Nuclear Materials and Energy, 2021, 28: 101049. [17] SKINNER C H, SULLENBERGER R, KOEL B E, et al.Plasma facing surface composition during NSTX Li experiments[J]. Journal of Nuclear Materials, 2013, 438: 647-650. [18] FURUYAMA Y, ITO K, DOHI S, et al. Characteristics of lithium thin films under deuterium ion implantation[J]. Journal of Nuclear Materials, 2003, 313-316: 288-291. [19] 丘克强, 段文军, 陈启元. 金属在真空状态下的蒸发速率[J]. 有色金属工程, 2002, 54(2): 48-52. [20] 夏体锐, 杨洪广, 占勤, 等. 材料中氢同位素行为热脱附谱实验方法研究[J]. 原子能科学技术, 2012, 46(增刊1): 510-516. [21] 傅青伟, 程龙, 王军, 等. 钨中氘氦行为的高分辨热脱附谱实验方法研究[J]. 原子能科学技术, 2018, 52(6): 1049-1055. |
[1] | 黄化岩, 刘芳. 基于电子诱导脱附的气体解吸实验装置研究[J]. 真空, 2019, 56(2): 31-36. |
[2] | 陈鑫, 陈金龙, 朱根良, 徐红兵, 付猷昆. HL-2M氦回收纯化系统建设[J]. 真空, 2019, 56(2): 16-18. |
|