欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (5): 37-41.doi: 10.13385/j.cnki.vacuum.2023.05.04

• 薄膜 • 上一篇    下一篇

等离子增强磁控溅射制备TiCr基纳米复合涂层的耐冲蚀耐腐蚀性能

李灿民1, 张心凤1, 魏荣华2   

  1. 1.安徽纯源镀膜科技有限公司,安徽 合肥 230088;
    2.美国西南研究院,德克萨斯州 圣安东尼奥 78238
  • 收稿日期:2023-01-15 出版日期:2023-09-25 发布日期:2023-09-26
  • 作者简介:李灿民(1985-),男,江西九江人,硕士。

The Anti-erosion (corrosion) Properties of TiCr-based Nanocomposite Coatings by Plasma Enhanced Magnetron Sputtering

LI Can-min1, ZHANG Xin-feng1, WEI Rong-hua2   

  1. 1. Anhui Chunyuan Coating Technology Co., Ltd., Hefei 230088, China;
    2. Southwest Research Institute, San Antonio 78238, USA
  • Received:2023-01-15 Online:2023-09-25 Published:2023-09-26

摘要: 使用等离子增强磁控溅射(PEMS)技术在H13热作模具钢表面制备了TiCrSiCN和TiCrSiCON两种纳米复合涂层。通过Rc压痕法、纳米压痕法、微型喷砂装置和恒电位仪分别测定了涂层与基体的结合力及其韧性、耐冲蚀和耐腐蚀性能,讨论了氧元素的加入对涂层性能的影响。结果表明:TiCrSiCN和TiCrSiCON纳米复合涂层均与基体结合良好;TiCr基纳米复合涂层耐冲蚀磨损性能是H13钢的4~5倍,TiCrSiCON具有比TiCrSiCN更好的耐冲蚀性能;TiCrSiCN、TiCrSiCON、H13钢的极化电阻依次降低;氧元素有利于提高TiCr基涂层与基体的结合力,但会降低涂层的韧性和耐腐蚀性能。

关键词: 等离子增强磁控溅射, TiCr基纳米复合涂层, 结合力, 韧性, 耐冲蚀磨损, 耐腐蚀

Abstract: Plasma enhanced magnetron sputtering was used to prepare TiCrSiCN and TiCrSiCON nanocomposite coatings on H13 hot working mould steel. Rc indentation method, nanoindentation method, micro-bead blaster, potentiostat were used to detect the adhesion force, toughness, erosion and corrosion resistance of the coatings, respectively. The influences of oxygen addition on the properties of the coatings were emphatically discussed. The results show that the TiCrSiCN and TiCrSiCON nanocomposite coatings have good adhesion to the substrate. The TiCr based nanocomposite coatings could improve the erosion and wear resistance over the uncoated H13 steel by 4~5 times, and the TiCrSiCON coating has better erosion resistance than TiCrSiCN coating. The polarization resistance of TiCrSiCN, TiCrSiCON, and H13 steel decreases sequentially. Oxygen addition is beneficial for improving the adhesion between TiCr based coatings and the substrate, but it will reduce the toughness and the corrosion resistance of the coating.

Key words: PEMS, TiCr based nanocomposite coating, adhesion, toughness, erosion resistance, corrosion resistance

中图分类号:  TB331;TB43

[1] DEMASI-MARCIN J T, GUPTA D K .Protective coatings in the gas turbine engine[J].Surface & Coatings Technology, 1994, 68/69:1-9.
[2] TABAKOFF W. Investigation of coatings at high temperature for use in turbomachinery[J]. Surface & Coatings Technology, 1989, 39/40:97-115.
[3] WOOD R J K. The sand erosion performance of coatings[J]. Materials and Design, 1999, 20(4):179-191.
[4] KRAL M V, DAVIDSON J L, WERT J J.Erosion resistance of diamond coatings[J]. Wear, 1993, 166(1):7-16.
[5] WEI R H, VAJO J J, MATOSSIAN J N,et al.Aspects of plasma-enhanced magnetron-sputtered deposition of hard coatings on cutting tools[J].Surface & Coatings Technology, 2002, 158/159:465-472.
[6] WEI R H.Plasma enhanced magnetron sputter deposition of Ti-Si-C-N based nanocomposite coatings[J].Surface & Coatings Technology, 2008, 203(5-7):538-544.
[7] WEI R H, LANGA E, RINCON C.Deposition of thick nitrides and carbonitrides for sand erosion protection[J]. Surface & Coatings Technology, 2006, 201(7):4453-4459.
[8] WEI R H.Plasma surface engineering research and its practical applications[M]. Kerala, India: Research Signpost, 2008.
[9] EL-RAHMAN A M A, WEI R, RAAIF M, et al. Effect of N2/TMS gas ratio on mechanical and erosion performances of Ti-Si-C-N nanocomposite coatings[J]. Journal of Materials Engineering and Performance, 2020, 29(5):3324-3333
[10] 李灿民. 等离子增强磁控溅射沉积新型纳米复合涂层[D]. 合肥:合肥工业大学,2011.
[11] REEDY M W, EDEN T J, POTTER J K,et al.Erosion performance and characterization of nanolayer(Ti,Cr)N hard coatings for gas turbine engine compressor blade applications[J].Surface & Coatings Technology, 2011,206(2/3) :464-472.
[12] WOLFE D E, GABRIEL B M, REEDY M W.Nanolayer (Ti,Cr)N coatings for hard particle erosion resistance[J].Surface & Coatings Technology, 2011, 205(19):4569-4576.
[13] SHTANSKY D V, KUPTSOV K A, KIRYUKHANTSEV- KORNEEV P V, et al. Comparative investigation of Al- and Cr-doped TiSiCN coatings[J]. Surface & Coatings Technology, 2011, 205(19):4640-4648.
[14] ROSSI S, FEDRIZZI L, LEONI M, et al.(Ti,Cr)N and Ti/TiN PVD coatings on 304 stainless steel substrates: wear-corrosion behaviour[J].Thin Solid Films, 1999, 350(1/2):161-167.
[15] LEE K H, PARK C H, YOON Y S. Wear and corrosion properties of (Ti1-xCrx)N coatings produced by the ion-plating method[J]. Surface & Coatings Technology, 2001, 142-144:971-977.
[16] HEINKE W, LEYLAND A, MATTHEWS A, et al.Evaluation of PVD nitride coatings, using impact, scratch and Rockwell- C adhesion tests[J]. Thin Solid Films,1995, 270(1/2) :431-438.
[17] ASTM International.Standard test method for adhesion strength and mechanical failure modes of ceramic coating by quantitative single point scratch testing: ASTM C1264-22 [S/OL]. https://www.astm.org/c1624-22.html.
[18] MUSIL J, JIROUT M.Toughness of hard nanostructured ceramic thin films[J]. Surface & Coatings Technology, 2007, 201(9-11):5148-5152.
[19] ASTM International.Standard test method for conducting erosion tests by solid particle impingement using gas jets: ASTM G76-18[S/OL]. https://www.astm.org/g0076- 18.html.
[1] 常振东, 邓仲华, 孙荣臻, 牟仁德, 胡江玮. 表面形貌对PVD法制备涂层结合性能的影响*[J]. 真空, 2022, 59(3): 52-56.
[2] 万书宏, 林晶, 冯帅. 热丝CVD法制备金刚石涂层刀具的研究现状*[J]. 真空, 2022, 59(1): 40-47.
[3] 武英桐, 李晓敏, 白睿, 王东伟, 王宇, 黄美东. 附加偏置电场对电弧离子镀TiN薄膜结构和性能的影响*[J]. 真空, 2021, 58(1): 63-66.
[4] 李昊, 王东伟, 张川, 刘婵, 黄美东. 电弧离子镀Cr/CrN多层膜的耐腐蚀性研究[J]. 真空, 2019, 56(3): 21-26.
[5] 王福贞 , 陈大民 , 颜远全 . 弧光放电氩离子清洗源[J]. 真空, 2019, 56(1): 27-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!