真空 ›› 2024, Vol. 61 ›› Issue (5): 97-109.doi: 10.13385/j.cnki.vacuum.2024.05.13
王富芳1,2, 徐子琪3, 郭冲4, 梁汉东1,2, 李展平4
WANG Fu-fang1,2, XU Zi-qi3, GUO Chong4, LIANG Han-dong1,2, LI Zhan-ping4
摘要: 矿物样品的研究是矿物学、岩石学、矿床学等地质学科的基础,矿物的表面形貌、元素组成和分布特征能够揭示成矿物质来源、成矿过程和地质历史等。本文阐述了对于矿物样品表征具有广泛应用潜力的TOF-SIMS原理、技术优势及其所需的真空条件,重点总结了国内外学者应用TOF-SIMS在矿物识别、矿物成像、矿物成分定量分析和深度剖析及矿物加工上的研究进展与存在的问题,并对相关领域进行了展望。
中图分类号: P575.9
[1] CARBONNE J M, KISS A, BOUVIER A, et al.Surface analysis by secondary ion mass spectrometry (SIMS): principles and applications from Swiss laboratories[J]. CHIMIA, 2022, 76(1/2): 26-33. [2] XU Z, LI S, GUO C, et al.Change of surface oxide layer of pyrite samples prepared by resin embedding polishing method after long-term placement and its effect on TOF-SIMS analysis[J]. Surfaces and Interfaces, 2024, 46: 104124. [3] PASTERSKI M J, LORENZ M, IEVLEV A V, et al.The determination of the spatial distribution of indigenous lipid biomarkers in an immature Jurassic sediment using time-of-flight-secondary ion mass spectrometry[J]. Astrobiology, 2023, 23(9): 936-950. [4] HUANG X F, ZHANG Q.Depression mechanism of acid for flotation separation of fluorapatite and dolomite using ToF-SIMS and XPS[J]. Journal of Molecular Liquids, 2024, 394: 123584. [5] ENGRAND C, LESPAGNOL J, MARTIN P, et al. Multi-correlation analyses of TOF-SIMS spectra for mineralogical studies[J]. Applied Surface Science, 2004,231/232: 883-887. [6] ENGRAND C, KISSEL J, KRUEGER F R, et al.Chemometric evaluation of time-of-flight secondary ion mass spectrometry data of minerals in the frame of future in situ analyses of cometary material by COSIMA onboard ROSETTA[J]. Rapid Communications in Mass Spectrometry, 2006, 20(8): 1361-1368. [7] VARMUZA K, FILZMOSER P, HILCHENBACH M, et al.KNN classification — evaluated by repeated double cross validation: recognition of minerals relevant for comet dust[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 138: 64-71. [8] KALEGOWDA Y, HARMER S L.Chemometric and multivariate statistical analysis of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulfides[J]. Analytical Chemistry, 2012, 84(6): 2754-2760. [9] KALEGOWDA Y, HARMER S L.Classification of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulphides by principal component analysis and artificial neural networks[J]. Analytica Chimica Acta, 2013, 759: 21-27. [10] RINNEN S, STROTH C, RIßE A, et al. Characterization and identification of minerals in rocks by ToF-SIMS and principal component analysis[J]. Applied Surface Science, 2015, 349: 622-628. [11] STOWE K G, CHRYSSOULIS S L, KIM J Y.Mapping of composition of mineral surfaces by TOF-SIMS[J]. Minerals Engineering, 1995, 8(4): 421-430. [12] LAI H, DENG J S, LIU Z L, et al.Determination of Fe and Zn contents and distributions in natural sphalerite/marmatite by various analysis methods[J]. Transactions of Nonferrous Metals Society of China, 2020,30(5):1364-1374. [13] 王涛, 葛祥坤, 范光, 等. FIB-TOF-SIMS联用技术在矿物学研究中的应用[J]. 铀矿地质, 2019, 35(4): 247-252. [14] 李展平. 飞行时间二次离子质谱(TOF-SIMS)分析技术[J]. 矿物岩石地球化学通报, 2020, 39(6): 1173-1190. [15] MATHEZ E A, MOGK D M.Characterization of carbon compounds on a pyroxene surface from a gabbro xenolith in basalt by time-of-flight secondary ion mass spectrometry[J]. The American Mineralogist, 1998, 83(7/8):918-924. [16] TIMMS N E, KIRKLAND C L, CAVOSIE A J, et al.Shocked titanite records Chicxulub hydrothermal alteration and impact age[J]. Geochimica et Cosmochimica Acta, 2020, 281: 12-30. [17] SAUNDERS K, RINNEN S, BLUNDY J, et al.TOF-SIMS and electron microprobe investigations of zoned magmatic orthopyroxenes: first results of trace and minor element analysis with implications for diffusion modeling[J]. American Mineralogist, 2012, 97(4): 532-542. [18] 梁汉东. 地质流体包裹体化学组成的离子成像方法研究[C]//中国地球物理学会第二十五届年会论文集. 合肥:中国地球物理学会,2009. [19] 李大鹏,杜杨松, SCOTT S D,等. 幔源角闪石巨晶中硫化物熔融包裹体研究[J]. 地质学报, 2012, 86(7):1091-1105. [20] PUTNIS C V, GEISLER T, SCHMID-BEURMANN P, et al.An experimental study of the replacement of leucite by analcime[J]. American Mineralogist, 2007, 92(1): 19-26. [21] ACHIWAWANICH S, JAMES B D, LIESEGANG J.XPS and ToF-SIMS analysis of natural rubies and sapphires heat-treated in a reducing (5mol% H2/Ar) atmosphere[J]. Applied Surface Science, 2008, 255(5): 2388-2399. [22] RINNEN S, GRÖGER-TRAMPE J, OSTERTAG-HENNING C, et al. ToF-SIMS as a tool for mapping reaction products of coupled dissolution-precipitation processes at mineral grain surfaces[J]. Surface and Interface Analysis, 2014, 46(S1): 330-333. [23] 刘宇豪, 洪秀萍, 梁汉东, 等. 云贵川交界地氟病区煤系黏土-黄铁矿的风化[J]. 环境化学, 2019, 38(6):1318-1327. [24] CAO Q Y, QIAN Y H, LIANG H D, et al.Mercury forms and their transformation in pyrite under weathering[J]. Surface and Interface Analysis, 2020, 52(5): 283-292. [25] MARQUES A F A, SCOTT S D, SODHI R N S. Time-of-fligt SIMS(TOF-SIMS) analyses of melt inclusions[J]. The Canadian Mineralogist, 2012, 50(5): 1305-1320. [26] SHAHWAN T, ERTEN H N, BLACK L, et al.TOF-SIMS study of Cs+ sorption on natural kaolinite[J]. The Science of the Total Environment, 1999, 226(2/3): 255-260. [27] SHAHWAN T, ERTEN H N, BLACK L, et al.ToF-SIMS depth profiling analysis of the uptake of Ba2+ and Co2+ ions by natural kaolinite clay[J]. Journal of Colloid and Interface Science, 2004, 277(1): 23-28. [28] DENG J S, LAI H, WEN S M, et al.Confirmation of interlayer sulfidization of malachite by TOF-SIMS and principal component analysis[J]. Minerals, 2019, 9(4): 204. [29] 陈哲, 夏柳荫, HART B, 等. 球磨介质及尺寸对铜锌矿矿浆化学性质及矿物表面化学性质的影响[J]. 中国有色金属学报, 2017, 27(8): 1701-1707. [30] BRITO E ABREU S, SKINNER W. Determination of contact angles, silane coverage, and hydrophobicity heterogeneity of methylated quartz surfaces using ToF-SIMS[J]. Langmuir, 2012, 28(19): 7360-7367. |
No related articles found! |
|