欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (1): 17-22.doi: 10.13385/j.cnki.vacuum.2023.01.03

• 薄膜 • 上一篇    下一篇

高分辨率钼/硅纳米多层膜TOF-SIMS和Pulsed-RF-GDOES深度谱的定量分析*

马泽钦1, 李海鸣2, 庄妙霞2, 李婷婷1, 李镇舟2, 蒋洁1, 连松友1, 王江涌1,3, 徐从康1,3   

  1. 1.汕头大学理学院物理系,广东 汕头 515063;
    2.汕头大学理学院数学系,广东 汕头 515063;
    3.广东省半导体材料与器件研究中心,广东 汕头 515063
  • 收稿日期:2022-06-27 出版日期:2023-01-25 发布日期:2023-02-07
  • 通讯作者: 王江涌,教授;徐从康,教授。
  • 作者简介:马泽钦(1999-),男,广东汕头人,本科生。
  • 基金资助:
    *广东大学生科技创新培育专项资金资助项目(攀登计划)(pdjh2021b0194)

Quantification of High-resolution TOF-SIMS and Pulsed-RF-GDOES Depth Profiles of Mo/Si Nano-multilayers

MA Ze-qin1, LI Hai-ming2, ZHUANG Miao-xia2, LI Ting-ting1, LI Zhen-zhou2, JIANG Jie1, LIAN Song-you1, WANG Jiang-yong1,3, XU Cong-kang1,3   

  1. 1. Department of Physics, Shantou University, Shantou 515063, China;
    2. Department of Mathmatics, Shantou University, Shantou 515063, China;
    3. Center of Semiconductor Materials and Devices, Shantou 515063, China
  • Received:2022-06-27 Online:2023-01-25 Published:2023-02-07

摘要: 飞行时间二次离子质谱(TOF-SIMS)和脉冲射频辉光放电发射光谱(Pulsed-RF-GDOES)是两种重要的深度剖析技术,前者广泛应用于半导体工业的质量控制,后者主要应用于工业涂层及表面氧(氮)化层的分析。Mo/Si纳米多层膜由于其出色的反射特性被广泛应用于纳米光刻、极紫外显微镜等领域。本文利用原子混合-粗糙度-信息深度(MRI)模型分辨率函数,通过卷积及反卷积方法分别对Mo(3.5nm)/Si(3.5nm)多层膜的TOF-SIMS和Pulsed-RF-GDOES深度谱数据进行了定量分析,获得了相应的膜层结构、膜层间界面粗糙度及深度分辨率等信息。结果表明:GDOES深度剖析产生了较大的溅射诱导粗糙度,SIMS的深度分辨率优于GDOES。

关键词: Pulsed-RF-GDOES, TOF-SIMS, MRI 模型, 深度分辨率, 卷积, 反卷积

Abstract: Time of flight second ion mass spectrometry(TOF-SIMS) and pulsed radio frequency glow discharge optical emission spectrometry(Pulsed-RF-GDOES) are two important depth profiling techniques, the former one is widely used in the fields of semiconductor industry and material science, while the latter one is usually applied to the analysis of industrial coating and surface oxynitride. Mo/Si nano-multilayers have been widely used in nanolithography, soft X-ray/EUV microscopy, solar astronomy and other fields because of their excellent reflection characteristics. In this paper, Pulsed-RF-GDOES and TOF-SIMS depth profiling data of Mo(3.5nm)/Si(3.5nm) nano-multilayer are evaluated quantitatively by the convolution and deconvolution methods with the resolution function of the atomic mixing-roughness-information depth(MRI). The layer structure, interface roughness and depth resolution upon depth profiling are obtained. The results show that GDOES depth profiling yields larger sputtering induced roughness, and the depth resolution of SIMS is better than that of GDOES.

Key words: Pulsed-RF-GDOES, TOF-SIMS, MRI model, depth resolution, convolution, deconvolution

中图分类号: 

  • TB43
[1] 康红利, 劳珏斌, 刘毅, 等. SIMS溅射深度剖析的定量分析[J]. 真空, 2015, 52(2): 44-49.
[2] 康红利, 简玮, 韩逸山, 等. 溅射深度剖析定量分析及其应用研究进展[J]. 汕头大学学报(自然科学版), 2016, 31(2): 3-24.
[3] 杨浩, 马泽钦, 蒋洁, 等. 辉光放电发射光谱高分辨率深度谱的定量分析[J]. 材料研究与应用, 2021, 15(5): 474-485.
[4] 梁家伟, 韩逸山, 庄素娜, 等. 辉光放电发射光谱在材料成分-深度分析中的应用[J]. 真空, 2017, 54(5): 39-46.
[5] 梁家伟, 林晓琪, 毕焰枫, 等. 不同工作参数下Ni/Ag双层膜GDOES深度谱的比较[J]. 真空, 2018, 55(2): 5-9.
[6] BER B, BÁBOR P, BRUNKOV P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: a round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.
[7] BELENGUER P, GANCIU M, GUILLOT P, et al.Pulsed glow discharges for analytical applications[J]. Spectrochimica Acta Part B, 2009, 64(7): 623-641.
[8] WIKE M, TEICHERT G, GEMMA R, et al.Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coating and thin films[J]. Thin Solid Films, 2011, 520(5): 1660-1667.
[9] 周刚, 吕凯, 刘远鹏, 等. 柔性功能薄膜辉光光谱深度分辨率分析[J]. 真空, 2020, 57(4): 1-5.
[10] GREHL T, MOLLERS R, NIEHUIS E. Low energy dual beam depth profiling: influence of sputter and analysis beam parameters on profile performance using TOF-SIMS[J]. Applied Surface Science, 2003, 203/204: 277-280.
[11] BAEK J Y, CHOI C M, LEE S J, et al.ToF-SIMS of OLED materials using argon gas cluster ion beam: a promising approach for OLED inspection[J]. Applied Surface Science, 2020, 507: 144887.
[12] GAJOS K, BUDKOWSKI A, PETROU P, et al.A perspective on ToF-SIMS analysis of biosensor interfaces: controlling and optimizing multi-molecular composition, immobilization through bioprinting, molecular orientation[J]. Applied Surface Science, 2022, 594: 153439.
[13] CORNETTE P, ZANNA S, SEYEUX A, et al.The native oxide film on a model aluminium-copper alloy studied by XPS and ToF-SIMS[J]. Corrosion Science, 2020, 174: 108837.
[14] KUMAR N, KOZAKOV A T, NEZHDANOV A V, et al.Quantum confinement effect in a nanoscale Mo/Si multilayer structure[J]. The Journal of Physical Chemistry C, 2020, 124(32): 17795-17805.
[15] YAMAGUCHI T, IKUTA H, TOMOFUJI T, et al.Reflective properties of Mo/Si multilayer for EUV lithography deposited by the magnetron sputtering device with superconducting bulk magnets[J]. Physica C: Superconductivity, 2008, 468(15/20): 2170-2173.
[16] ANDREEV S S, GAPONOV S V, GUSEV S A, et al.The microstructure and X-ray reflectivity of Mo/Si multilayers[J]. Thin Solid Films, 2002, 415(1/2): 123-132.
[17] SCHLATMANN R, KEPPEL A, XUE Y, et al.Enhanced reflectivity of soft X-ray multilayer mirrors by reduction of Si atomic density[J]. Applied Physics Letters, 1993, 63(24), 3297-3299.
[18] HOFMANN S.Atomic mixing, surface roughness and information depth in high-resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and Interface Analysis, 1994, 21(9): 673-678.
[19] ZIEGLER J F, BIERSACK JP, LITTMARK U.The stopping range of ions in solids[M]. NewYork: Pergamon Press, 1985.
[20] HOFMANN S.Characterization of nanolayers by depth sputter depth profiling[J]. Applied Surface Science, 2005, 241(1/2): 113-121.
[21] SEAH M P, LEA C.Depth resolution in composition profiles by ion sputtering and surface analysis for single-layer and multilayer structures on real substrates[J]. Thin Solid Films, 1981, 81(3): 257-270.
[22] KANG H, LAO J B, LI Z P, et al.Reconstruction of GaAs/AlAs supperlattice multilayer structure by quantification of AES and SIMS sputter depth profiles[J]. Applied Surface Science, 2016, 388: 584-588.
[23] WANG J Y, HOFMANN S, ZALAR A, et al.Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1/2): 120-124.
[24] LIAN S Y, WANG Z J, WANG C L, et al.Deconvolution method for obtaining directly the original in-depth, distribution of composition from measured sputter depth profile[J]. Vacuum, 2019, 166(5): 196-200.
[25] 李静, 谭张华, 刘星星, 等. 利用遗传算法定量分析 Ni/Cr 多层膜俄歇深度谱[J]. 真空, 2021, 58(4): 6-11.
[26] WANG C L, LI J, LIU X X, et al.Optimization of the two parameters in the deconvolution procedure for obtaining the original in-depth distribution of composition from measured sputter depth profile by genetic algorithm[J]. Vacuum, 2021, 184: 109866.
[27] ASTM. Standard terminology relating to surface analysis: ASTM E673-03[S]. Philadelphia: American Society for Testing and Materials, 2003.
[1] 李静, 谭张华, 刘星星, 陈颖琳, 李豪文, 杨浩, 王昌林, 王江涌, 徐从康. 利用遗传算法定量分析Ni/Cr多层膜俄歇深度谱*[J]. 真空, 2021, 58(4): 6-11.
[2] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌. 柔性功能薄膜辉光光谱深度分辨率分析*[J]. 真空, 2020, 57(4): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .