欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2025, Vol. 62 ›› Issue (4): 89-96.doi: 10.13385/j.cnki.vacuum.2025.04.16

• 真空应用 • 上一篇    下一篇

真空设备风冷换热系统结构的仿真优化

刘昱辰1, 贾守亚2, 张鹏泽1   

  1. 1.沈阳真空技术研究所有限公司, 辽宁 沈阳 110042;
    2.中国核电工程有限公司郑州分公司, 河南 郑州 450052
  • 收稿日期:2024-11-25 出版日期:2025-07-25 发布日期:2025-07-24
  • 作者简介:刘昱辰(1996-),男,辽宁省沈阳市人,本科。

Simulation and Optimization of Structure of Air-Cooled Heat Exchange System for Vacuum Equipment

LIU Yuchen1, JIA Shouya2, ZHANG Pengze1   

  1. 1. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China;
    2. China Nuclear Power Engineering Co., Ltd., Zhengzhou 450052, China
  • Received:2024-11-25 Online:2025-07-25 Published:2025-07-24

摘要: 结合真空设备的发展趋势明确了设备风冷换热系统的发展方向为提高换热效率以及增加排污功能等。基于此,本文通过仿真计算对风冷换热系统的进风管道和换热器风机连接管道进行结构优化,通过控制流量计算不同管道结构对风冷换热系统出风的影响,并对比分析了管道外壁面温度及出口风速等参数。结果表明:与传统直角弯管相比,采用焊接弯头与分体式水冷夹套设计的进风管道时,出口气体流速得到提升,壁面温度分布均匀性改善;在连接管道中引入缩径(DN100)排污口与引流结构有利于污染物沉积,气体流速较等径开口结构更为稳定;验证结果表明该新型管道设计能够减小压降,降低流动阻力,显著提升换热效率。

关键词: 风冷换热, 管道, 仿真优化

Abstract: Aligning with the development trends of vacuum equipment, the advancement direction for air-cooled heat exchange systems is identified as enhancing heat transfer efficiency and incorporating sediment discharge functionality. This study optimizes the structure of the inlet air duct and the connecting duct between the heat exchanger and the fan through simulation calculations. Flow control calculations were performed to assess the impact of different duct structures on the outlet airflow of the air-cooled heat exchange system, with comparative analyses conducted on parameters such as duct outer wall temperature and outlet air velocity. The results indicate that compared to the traditional right-angle bend, the inlet duct employing a welded elbow and a split-type water-cooled jacket design exhibits increased outlet gas velocity and improved uniformity in wall temperature distribution. Introducing a reduced-diameter (DN100) sediment discharge port with a diversion structure into the connecting duct facilitates pollutant deposition, resulting in more stable gas velocity compared to the structure with an equal-diameter opening. Validation results demonstrate that this novel duct design can reduce pressure drop, decrease flow resistance, and significantly improve heat exchange efficiency.

Key words: air-cooled heat exchange, duct, simulation optimization

中图分类号:  TG232.6;U262.23+2

[1] PARK H, ROH J, OH K C, et al.Modeling and optimization of water mist system for effective air-cooled heat exchangers[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122297.
[2] BAI X, JIN H, DUAN C, et al.Simulation study on heat dissipation of a prismatic power battery considers anisotropic thermal conductivity in air cooling system[J]. Thermal Science and Engineering Progress, 2024, 55: 102920.
[3] LI M, LU Z, KANG Z, et al.Investigation of an air-cooled double-channel photovoltaic/thermal system with integrated thermal energy storage[J]. Journal of Building Engineering, 2023, 77: 107539.
[4] LI Y H, FU Z, WANG W, et al.Study on heat transfer characteristics of air-cooled dry bottom ash removal system[J]. Case Studies in Thermal Engineering, 2023, 47: 103103.
[5] 郭锐. 风冷热泵型空调系统设计[J]. 工程技术研究, 2021,6(3): 204-205.
[6] 靳新春. 水冷式压缩冷凝机组增设风冷冷凝器的改进[J]. 冷藏技术,2018,41(3): 45-47.
[7] 储晓阳. 医疗设备中的冷却散热系统概述[J]. 中国医疗器械信息,2018,24(14): 146-147.
[8] 吴静,张超超.微通道换热器用于重力热管系统的试验研究[J].制冷与空调,2021,21(7):41-44.
[9] 巩飞,郭鸿浩,刘泽远.功率变换器风冷系统优化的仿真研究[J].电气工程学报, 2024, 19(3):128-136.
[10] 吴本南. 风冷散热系统风机安装方式研究[J].低温与超导, 2019, 47(10):87-90.
[11] CHEN K, ZHANG Z, WU B, et al.An air-cooled system with a control strategy for efficient battery thermal management[J]. Applied Thermal Engineering, 2024, 236: 121578.
[12] MCDONALD K, SUN D W.Vacuum cooling technology for the food processing industry: a review[J]. Journal of Food Engineering, 2000, 45(2): 55-65.
[13] SUN D W, ZHENG L.Vacuum cooling technology for the agri-food industry: past, present and future[J]. Journal of Food Engineering, 2006, 77(2): 203-214.
[14] ZHOU Y, CHEN S, GUO W, et al.Recent developments in the vacuum preloading technique in China[J]. Sustainability, 2022, 14(21): 13897.
[15] AHMAD F, AUNSBORG T S, JØRGENSEN A B, et al. From vacuum tubes to modern semiconductors: opportunities for industrial heating industry[J]. IEEE Transactions on Industry Applications, 2024, 60(4): 6488-6498.
[16] PATIL D S, NEHETE M M.Performance of air cooled condenser in various conditions: a review[J]. MAYFEB Journal of Mechanical Engineering, 2019, 2.
[17] MEYER C J, KRÖGER D G. Air-cooled heat exchanger inlet flow losses[J]. Applied Thermal Engineering, 2001, 21(7): 771-786.
[18] NEMATI H, MOGHIMI M A, SAPIN P, et al.Shape optimisation of air-cooled finned-tube heat exchangers[J]. International Journal of Thermal Sciences, 2020, 150: 106233.
[19] EIDAN A A, ALSHUKRI M J, AL-FAHHAM M, et al.Optimizing the performance of the air conditioning system using an innovative heat pipe heat exchanger[J]. Case Studies in Thermal Engineering, 2021, 26: 101075.
[20] O'DONOVAN A, GRIMES R, SIKORA P. Enhanced performance of air-cooled thermal power plants using low temperature thermal storage[J]. Applied Energy, 2019, 250: 1673-1685.
[21] MARSHALOVA G S, SUKHOTSKII A B, KUNTYSH V B.Enhancing energy saving in air cooling devices by intensifying external heat transfer[J]. Chemical and Petroleum Engineering, 2020, 56(1): 85-92.
[22] KUNTYSH V B, BESSONNYI A N, BRILL' A A. Improving the energy efficiency of air-cooled heat exchangers[J]. Chemical and Petroleum Engineering, 1997, 33(4): 402-407.
[23] VU T X, DHIR V K.Enhancement of air-side heat transfer in air-cooled heat exchangers using dimpled fins[J]. Journal of Enhanced Heat Transfer, 2021, 28(1): 63-84 .
[24] 武义锋,张海峰,曾环,等.DN800型低温泵的设计与实验[J].低温与超导,2024,52(9):95-100.
[25] 靳朋礼,巩春志,孔营,等.真空镀膜设备的简易快捷酒精检漏的有效性研究[J].真空,2019,56(5):69-73.
[26] 全国暖通空调及净化设备标准化技术委员会. 组合式空调机组: GB/T 14294-2008[S]. 北京: 中国标准出版社, 2008.
[27] MILLS A F.Heat transfer[M]. 2ed. Upper Saddle River: Prentice Hall, 1999.
[28] BEJAN A.Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes[M]. Boca Raton: CRC Press, 1995.
[1] 齐大伟, 李传旭, 陈德江, 赵顺洪. 受限空间离心真空泵进气管道气动优化设计[J]. 真空, 2025, 62(2): 35-41.
[2] 姜远镇, 邓家良, 韩雨松, 武义锋. 脉管制冷机的研究进展及其仿真优化*[J]. 真空, 2024, 61(4): 35-41.
[3] 黄尊地, 伊严严, 常宁. 超声速运行时管道列车激波特性分析*[J]. 真空, 2022, 59(5): 55-62.
[4] 宋嘉源, 李田, 张继业, 张卫华. 管道断面外形对亚音速真空管道磁浮系统气动特性的影响*[J]. 真空, 2022, 59(1): 7-12.
[5] 吕乾乾, 孙振川, 周建军, 杨振兴, 陈瑞祥, 游慧杰. 低真空管道系统性能室内实验研究*[J]. 真空, 2021, 58(3): 7-12.
[6] 孙克刚, 马征宾, 郭希坤, 孙浩然. 大吨位真空吸管器抽真空系统及吸盘的研制应用[J]. 真空, 2020, 57(6): 75-79.
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(六)[J]. 真空, 2018, 55(6): 28-32.
[8] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .