欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (6): 1-8.doi: 10.13385/j.cnki.vacuum.2023.06.01

• 测量与控制 •    下一篇

负电子亲和势材料及其在冷阴极中的应用*

朱韬远, 魏贤龙   

  1. 北京大学电子学院 纳米器件物理和化学教育部重点实验室,北京 100871
  • 收稿日期:2023-04-30 出版日期:2023-11-25 发布日期:2023-11-27
  • 通讯作者: 魏贤龙,博导。
  • 作者简介:朱韬远(2000-),男,四川省巴中市人,博士研究生。
  • 基金资助:
    *国家自然科学基金(62022007)

Negative Electron Affinity Materials and Their Applications in Cold Cathodes

ZHU Tao-yuan, WEI Xian-long   

  1. Key Laboratory for the Physics and Chemistry of Nanodevices and School of Electronics, Peking University, Beijing 100871, China
  • Received:2023-04-30 Online:2023-11-25 Published:2023-11-27

摘要: 从20世纪60年代GaAs被首次发现具有负的电子亲和势起,负电子亲和势材料便被广泛地研究并应用于光电发射、二次电子发射以及冷阴极的制备中。相较于传统发射材料,负电子亲和势材料内部导带底高于表面真空能级,使得材料导带中的电子更易于从表面发射到真空中,因此该类型材料成为电子发射的理想材料。本文从定义、主要材料分类以及在冷阴极中的应用三个部分介绍了负电子亲和势材料,并对该材料应用的瓶颈和未来发展方向做了简要总结。

关键词: 负电子亲和势, 电子发射, 冷阴极

Abstract: Since GaAs was first discovered to have a negative electron affinity in the 1960s, negative electron affinity(NEA)materials have been widely studied and used in photoelectron emission,secondary electron emission and cold cathode. Compared with conventional emitting materials, the conduction band minimum of bulk NEA materials is higher than their surface vacuum energy level, which makes it easier for electrons in the conduction band to be emitted from the surface into the vacuum, and therefore these materials are ideal for electron emission. This paper introduces the NEA materials from the definition, main material classification and applications in cold cathodes, and gives a conclusion of the bottleneck and future development direction of NEA material.

Key words: negative electron affinity, electron emission, cold cathode

中图分类号:  TN304;TN303

[1] RÜDENAUER F G, Field emission devices for space applications[J]. Surface and Interface Analysis, 2007, 39(2/3): 116-122.
[2] MAKELA J M, WASHELESKI R L, KING L B.Regenerable field emission cathode for spacecraft neutralization[J]. Journal of Propulsion and Power, 2009, 25(4): 970-975.
[3] MIER-HICKS F, LOZANO P C.Spacecraft-charging characteristics induced by the operation of electrospray thrusters[J]. Journal of Propulsion and Power, 2017, 33(2): 456-467.
[4] SHIN Y M, ZHAO J, BARNETT L R, et al.Investigation of terahertz sheet beam traveling wave tube amplifier with nanocomposite cathode[J]. Physics of Plasmas, 2010, 17(12): 123105.
[5] BUSTA H H, CHEN J M, SHEN Z, et al.Characterization of electron emitters for miniature X-ray sources[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2003, 21(1): 344-349.
[6] GÓRECKA-DRZAZGA A. Miniature X-ray sources[J]. Journal of Microelectromechanical Systems, 2017, 26(1): 295-302.
[7] QI S K, WANG X X, LUO J R, et al.Secondary electron emission of the cathode in high-power continuous wave magnetron tubes[C]//2014 Tenth International Vacuum Electron Sources Conference(IVESC). St.Petersburg, Russia, 2014: 1-2.
[8] WANG X, JIANG P, WANG B, et al.Recent progress of cathodes in high-power continuous wave magnetron tubes[C]//2018 IEEE International Vacuum Electronics Conference(IVEC). Monterey, CA, USA: IEEE, 2018: 45-46.
[9] MURPHY E L, GOOD R H.Thermionic emission,field emission, and the transition region[J]. Physical Review, 1956, 102(6): 1464-1473.
[10] SCHEER J J, VAN LAAR J.GaAs-Cs: a new type of photoemitter[J]. Solid State Communications, 1965, 3(8): 189-193.
[11] GOLDSTEIN A M, GROVER N B.Semiconductor Surfaces[M]. Amsterdam: North-Holland, 1965.
[12] MARTINELLI R U, FISHER D G.The application of semiconductors with negative electron affinity surfaces to electron emission devices[J]. Proceedings of the IEEE, 1974, 62(10): 1339-1360.
[13] SPICER W E.Photoemissive, photoconductive, and optical absorption studies of alkali-antimony compounds[J]. Physical Review, 1958, 112(1): 114-122.
[14] 常本康. 负电子亲和势光电阴极50年史话[J]. 红外技术, 2015, 37(10): 801-806.
[15] TURNBULL A A, EVANS G B.Photoemission from GaAs-Cs-O[J]. Journal of Physics D: Applied Physics, 1968, 1(2): 155.
[16] FISHER D G, ENSTROM R E, ESCHER J S, et al.Photoelectron surface escape probability of(Ga, In)As: Cs-O in the 0.9 to[inverted lazy s]1.6μm range[J]. Journal of Applied Physics, 1972, 43(9): 3815-3823.
[17] GARBE S.CsF, Cs as a low work function layer on the GaAs photocathode[J]. Physica Status Solidi A, 1970, 2(3): 497-501.
[18] WILLIAMS B F, SIMON R E.Direct measurement of hot electron-phonon interactions in GaP[J]. Physical Review Letters, 1967, 18(13): 485-487.
[19] STUPP E, PELISSIER A, KIDDER M, et al.GaP negative-electron-affinity cold cathodes: a demonstration and appraisal[J]. Journal of Applied Physics, 1977, 48(11): 4741-4748.
[20] SUKEGAWA T, KAN H, NAKAMURA T, et al.GaP negative-electron-affinity cold cathodes[J]. Journal of Applied Physics, 1979, 50(5): 3780-3782.
[21] NORTON T J, WOODGATE B E, STOCK J, et al.Results from Cs activated GaN photocathode development for MCP detector systems at NASA GSFC[C]//Optical Science and Technology, SPIE′s 48th Annual Meeting. San Diego, California, USA, 2003: 155-164.
[22] WANG X, WANG M, LIAO Y, et al.Negative electron affinity of the GaN photocathode: a review on the basic theory, structure design, fabrication,and performance characterization[J]. Journal of Materials Chemistry C, 2021, 9(38): 13013-13040.
[23] YANG M, CHANG B, WANG M.Cesium, oxygen coadsorption on AlGaN(0001) surface:experimental research and ab initio calculations[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(4): 2181-2188.
[24] ZHANGYANG X, LIU L, LV Z, et al.Enhanced collection efficiency of photoelectrons of negative electron affinity AlGaN heterojunction nanorod array photocathodes[J]. JOM, 2022, 74(1): 53-62.
[25] UEBBING J J, JAMES L W.Behavior of cesium oxide as a low work-function coating[J]. Journal of Applied Physics, 1970, 41(11): 4505-4516.
[26] MILTON A F, BAER A D.Interfacial barrier of heterojunction photocathodes[J]. Journal of Applied Physics, 1971, 42(12): 5095-5101.
[27] GAO H R.Investigation of the mechanism of the activation of GaAs negative electron affinity photocathodes[J]. Journal of Vacuum Science & Technology A, 1987, 5(4): 1295-1298.
[28] LIN L W.The role of oxygen and fluorine in the electron emission of some kinds of cathodes[J]. Journal of Vacuum Science & Technology A, 1988, 6(3): 1053-1057.
[29] LU Q B, PAN Y X, GAO H R.Optimum(Cs, O)/GaAs interface of negative-electron-affinity GaAs photocathodes[J]. Journal of Applied Physics, 1990, 68(2): 634-637.
[30] SOMMER A H.Cesium-oxygen activation of three-five compound photoemitters[J]. Journal of Applied Physics, 1971, 42(5): 2158.
[31] PHILLIPS C C, HUGHES A E, SIBBETT W.Quantitative XPS surface chemical analysis and direct measurement of the temporal response times of glass-bonded NEA GaAs transmission photocathodes[J]. Journal of Physics D: Applied Physics, 1984, 17(8): 1713-1725.
[32] MARTINELLI R U.Infrared photoemission from silicon[J]. Applied Physics Letters, 1970, 16(7): 261-262.
[33] MARTINELLI R U.Reflection and transmission secondary emission from silicon[J]. Applied Physics Letters, 1970, 17(8): 313-314.
[34] MARTINELLI R U.Negative electron affinity surfaces on silicon using a rubidium/oxygen dipole layer[J]. Journal of Applied Physics, 1973, 44(6): 2566-2570.
[35] LEVINE J D.Structural and electronic model of negative electron affinity on the Si/Cs/O surface[J]. Surface Science, 1973, 34(1): 90-107.
[36] HIMPSEL F J, KNAPP J A, VANVECHTEN J A, et al.Quantum photoyield of diamond(111)-a stable negative- affinity emitter[J]. Physical Review B, 1979, 20(2): 624-627.
[37] VAN DER WEIDE J, ZHANG Z, BAUMANN P K, et al. Negative-electron-affinity effects on the diamond(100)surface[J]. Physical Review B, 1994, 50(8): 5803-5806.
[38] NEMANICH R J, BAUMANN P K, BENJAMIN M C, et al.Negative electron affinity surfaces of aluminum nitride and diamond[J]. Diamond and Related Materials, 1996, 5(6-8): 790-796.
[39] BAUMANN P K, NEMANICH R J.Electron affinity and Schottky barrier height of metal-diamond(100), (111), and (110) interfaces[J]. Journal of Applied Physics, 1998, 83(4): 2072-2082.
[40] CUI J B, RISTEIN J, LEY L.Electron affinity of the bare and hydrogen covered single crystal diamond(111)surface[J]. Physical Review Letters, 1998, 81(2): 429-432.
[41] KRAINSKY I L, ASNIN V M.Negative electron affinity mechanism for diamond surfaces[J]. Applied Physics Letters, 1998, 72(20): 2574-2576.
[42] MAIER F, RISTEIN J, LEY L.Electron affinity of plasma-hydrogenated and chemically oxidized diamond(100) surfaces[J]. Physical Review B, 2001, 64(16): 165411.
[43] SPEAR K E.Diamond-ceramic coating of the future[J]. Journal of the American Ceramic Society, 1989, 72(2): 171-191.
[44] PICKETT W E.Negative electron affinity and low work function surface: cesium on oxygenated diamond(100)[J]. Physical Review Letters, 1994, 73(12): 1664-1667.
[45] FOX C A, KELLY M A, HAGSTROM S B, et al.Photoelectron emission from the cesiated diamond(110)surface[J]. MRS Online Proceedings Library, 1995, 416: 449-454.
[46] GEIS M W, TWICHELL J C, MACAULAY J, et al.Electron field emission from diamond and other carbon materials after H2, O2, and Cs treatment[J]. Applied Physics Letters, 1995, 67(9): 1328-1330.
[47] LOH K P, XIE X N, YANG S W, et al.A spectroscopic study of the negative electron affinity of cesium oxide-coated diamond(111) and theoretical calculation of the surface density-of-states on oxygenated diamond(111)[J]. Diamond and Related Materials, 2002, 11(7): 1379-1384.
[48] BANDIS C, PATE B B.Photoelectric emission from negative-electron-affinity diamond(111) surfaces:exciton breakup versus conduction-band emission[J]. Physical Review B, 1995, 52(16): 12056-12071.
[49] DIEDERICH L, KÜTTEL O M, AEBI P, et al. Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy[J]. Surface Science, 1998, 418(1): 219-239.
[50] BANDIS C, PATE B B.Photoelectric emission from the negative electron affinity(100) diamond surface-exciton effects[J]. Surface Science, 1996, 350(1-3): 315-321.
[51] HUMPHREYS T P, THOMAS R E, MALTA D P, et al.The role of atomic hydrogen and its influence on the enhancement of secondary electron emission from C(001)surfaces[J]. Applied Physics Letters, 1997, 70(10): 1257-1259.
[52] DIEDERICH L, KÜTTEL O M, AEBI P, et al. Photoelectron emission from the negative electron affinity caesiated natural diamond(100) surface[J]. Diamond and Related Materials, 1998, 7(2-5): 660-665.
[53] KOHN E S.Cold-cathode electron emission from silicon[J]. Applied Physics Letters, 1971, 18(7): 272-273.
[54] TAKEUCHI D, MAKINO T, KATO H, et al.Electron emission from a diamond(111) p-i-n+ junction diode with negative electron affinity during room temperature operation[J]. Applied Physics Express, 2010, 3(4): 041301.
[1] 吴荣燕, 武亚新, 周剑良, 阳璞琼, 伍鸿鹄, 陈容才. 四极管等效二极管空间电荷限制流研究进展*[J]. 真空, 2023, 60(1): 62-70.
[2] 方有维, 刘林, 俞世吉, 李玉涛. 金属钼、铪栅极材料电子发射问题研究[J]. 真空, 2022, 59(6): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .