真空 ›› 2025, Vol. 62 ›› Issue (2): 28-34.doi: 10.13385/j.cnki.vacuum.2025.02.04
卢国享, 王中荔
LU Guoxiang, WANG Zhongli
摘要: 为确保瓷砖粘合剂制备过程中的稳定性并优化其粘接性能,研究了结合真空技术的新型材料瓷砖粘合剂的制备方法与性能。根据标准瓷砖尺寸制备瓷砖粘合的混凝土表面试块,并根据室内装饰施工场景为其涂刷防水材料。对邻苯二甲酸氢钾和甲苯二异氰酸酯进行真空合成,制备瓷砖粘合剂预聚物。通过迈克尔加成反应使粘合剂预聚物改性,降低其生物毒性。利用真空干燥箱对改性粘合剂预聚物进行干燥处理,调控干燥过程,获得粘合剂初产物。利用真空干燥箱和循环水真空泵排除水分和空气干扰,保证粘合剂在真空稳定状态下完成最终制备。实验结果表明,粘合剂的傅立叶变换红外光谱中含有大量的叠氮基团,生物毒性较低。粘合剂与瓷砖表面及混凝土表面的接触角均小于90°。在应变值为8%~11%时,粘合剂的力学性能较优。在环境温度为180 ℃以下时,粘合剂的热稳定性较优。该新型材料瓷砖粘合剂在室内装饰施工领域中的应用较为环保,在真空稳定状态下粘合剂与瓷砖分子作用受空气和水分子影响较小,粘附性能较优。
中图分类号: U528
[1] 蒋方新, 陈尚志, 李佩勋,等. 预应力混凝土梁缓凝粘合剂有效强度试验研究[J]. 建筑结构, 2023, 53(8): 113-118. [2] 李慧, 罗国勤, 桑丽鹏,等. 高能固体推进剂粘合剂固化催化机理的密度泛函理论研究[J]. 固体火箭技术, 2023, 46(1): 96-101. [3] XU J, WANG D, LEI Y, et al.Effects of combined ultrasonic and microwave vacuum drying on drying characteristics and physicochemical properties of tremella fuciformis[J]. Ultrasonics Sonochemistry, 2022, 84: 105963. [4] STANCU C, DĘBSKI D, MICHALAK J. Construction products between testing laboratory and market surveillance: case study of cementitious ceramic tile adhesives[J]. Materials, 2022, 15(17): 6167. [5] 纪倩, 张可, 魏振宇,等. 儿茶酚基团改性冷水鱼皮明胶组织粘合剂的制备及性能评价[J]. 功能材料, 2024, 55(4): 4191-4200. [6] 赵泉湧, 侯传金, 刘彦军. 聚丙烯酸酯-葡聚糖体系锂电池水性正极粘合剂的制备及性能[J]. 化工新型材料, 2024, 52(3): 193-197. [7] SUN P, MEI S, XU J F, et al.A bio-based supramolecular adhesive: ultra-high adhesion strengths at both ambient and cryogenic temperatures and excellent multi-reusability[J]. Advanced Science, 2022, 9(28): 2203182. [8] NEJMEH K.Enhancing adhesion and water resistance in clayey adhesives mixtures: strategies for vertical and horizontal applications[D]. Paris:Université Gustave Eiffel, 2024. [9] 李佩勋, 蒋方新, 孙悦,等. 热固型缓凝粘合剂实际张拉适用期和实际有效强度期估算方法[J]. 建筑结构, 2022, 52(13): 133-139. [10] 沈忱, 闫石, 姚杰,等. 液态氟橡胶改性端羟基嵌段共聚醚粘合剂及其对铝粉热氧化行为的影响[J]. 兵工学报, 2022, 43(4): 780-787. [11] RAJESH S, KRISHNAIAH R V, RAJU K V B. Experimental study on flexure behavior of partial replacement ceramic waste tiles[J]. Educational Administration: Theory and Practice, 2024, 30(4): 8143-8148. [12] 李晓静, 文颖峰, 王勇,等. 聚(碳酸酯-醚)/乙基纤维素超分子复合物的制备及其粘接性能[J]. 高分子通报, 2023, 36(11): 1538-1549. [13] 曹宇, 胡继林, 陈占军,等. 不同粘结剂与烧结温度对Al2O3陶瓷力学性能和显微结构的影响[J]. 粉末冶金工业, 2023, 33(5): 119-124. [14] 刘加润, 杨紫钰, 伍芳,等. 硅负极用单宁酸复合海藻酸基双网络粘结剂性能研究[J]. 电子元件与材料, 2023, 42(10): 1174-1180. [15] LU Y, FU W, REN H, et al.Preparation and application of high-performance composite polymer emulsion cement waterproof coatings[J]. Pigment & Resin Technology, 2024, 53(2): 154-163. [16] 刘俊明, 章林, 张百成,等. 粘结剂喷射成形多孔Inconel 625合金的孔隙结构及力学性能研究[J]. 航空制造技术, 2023, 66(18): 79-85. [17] 谭青焕, 张友寿, 夏露,等. 聚丙烯酰胺对磷酸盐粘结剂及其热硬砂的性能影响[J]. 铸造, 2023, 72(9): 1122-1126. [18] 吴琛, 储福玮, 龚明子,等. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 159-166. [19] BAE D, LEE J W, RYU D H.Enantio-and diastereoselective michael addition of cyclic ketones/aldehydes to nitroolefins in water as catalyzed by proline-derived bifunctional organocatalysts[J]. The Journal of Organic Chemistry, 2022, 87(24): 16532-16541. [20] 曾芳磊, 宋柯蒙, 常世烨,等. 用于Li-S电池硫正极的新型水性粘结剂的研究[J]. 电源技术, 2022, 46(11): 1294-1297. [21] 赵俊捷, 陶文武, 曾利建,等. 基于蛋白质分散的碳纳米管/环氧树脂粘结剂的粘结性能[J]. 复合材料学报, 2023, 40(2): 753-760. [22] 崔亚楠, 孙琪, 任晓燕,等. 基于原位电化学石英晶体微天平技术的硅基负极粘结剂性能分析[J]. 分析化学, 2022, 50(3): 384-391. [23] 单连杰. 外墙保温瓷砖粘合剂的制备方法与施工工艺[J]. 粘接, 2023, 50(8): 31-34. [24] 岳明, 洪晓明, 张泽亮. 粘合剂对聚合物复合预浸料热压罐成型的影响及工艺参数研究[J]. 粘接, 2023, 50(3): 94-97. [25] 张世超, 武令豪, 孙现凯,等. 超低导热系数多层复合材料低气压环境隔热性能[J]. 现代技术陶瓷, 2023(增刊1): 442-450. [26] 刘诗梦, 赵环宇, 王杰,等. 真空技术在先进陶瓷制备中的应用[J]. 真空, 2024, 61(4): 85-91. [27] ZHAI Y, BAO Y, NING T, et al.Room temperature fabrication of magnetic covalent organic frameworks for efficient enrichment of parabens in water[J]. Journal of Chromatography A, 2023, 1692: 463850. |
[1] | 苏天一, 张志军, 韩晶雪. 应用二维轴对称模型的微波真空干燥数值模拟*[J]. 真空, 2020, 57(4): 60-65. |
[2] | 彭润玲, 尹沙沙, 韦妍, 刘德荣, 王宁. 真空冷冻干燥法制备无机纳米粉的研究现状*[J]. 真空, 2019, 56(5): 77-84. |
[3] | 王传博, 董辉. 美国工业大麻的真空干燥及对国内真空干燥行业的启示[J]. 真空, 2019, 56(3): 57-59. |
|