欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (5): 19-23.doi: 10.13385/j.cnki.vacuum.2020.05.05

• Thin Film • Previous Articles     Next Articles

Study on Depositing Rate of the Anatase TiO2Thin Film Preparated by the Direct Current Magnetron Sputtering Technique, Its Application in the Fabricating of Multilayer Films

WANG Zhao-yong1,2, LI Wei1,2, WANG Kai-hong1, LI Zong-ze1, LIU Zhi-qing1,2, YU Chen-sheng1, WANG Xin-lian1,2, WANG Xiao-ni3, WU Hao1, MA Pei-fang4   

  1. 1. Henan Provincial Engineering Laboratory of Building-Photovoltaics, Pingdingshan 467036, China;
    2. Institute of Sciences of Henan University of Urban Construction, Pingdingshan 467036, China;
    3. School of Physical Engineering and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China;
    4. Pingding Shan Institute of Agricultural Sciences, Pingdingshan 467036, China
  • Received:2019-08-24 Published:2020-11-06

Abstract: Anatase TiO2 thin films were fabricated by DC magnetron sputtering technology(DCMS). The effects of the substrate temperature, pressure and sputtering power on the deposition rate of TiO2 films were studied. The surface morphology, structure and film thickness of the samples were characterized by field emission scanning electron microscopy(FESEM), X-ray diffractometer(XRD)and elliptical polarizer. The experimental results showed that the thin film was prepared as the single anatase phase and the surface is uniform. With the increase of the deposition temperature, the deposition rate of the thin film increased from 2.16nm/min to 4.03nm/min at the temperature from 100℃ to 400℃; The depositing rate decreased when the pressure increased. The deposition rates at the conditions of 0.75PA, 1.5 Pa and 3.0Pa are 4.48nm/min, 3.18nm/min and 2.42nm/min, respectively; The depositing rate increased as the sputtering power increased. The deposition rates corresponding to 100W, 295W, and 443W were 2.95nm/min, 3.18nm/min, and 7.50nm/min, respectively. In the end, double-layer TiO2 film was designed on the glass substrate using the TFC film system design software. The film was prepared on the ground of results. The experimental value and the theoretical design results are very consistent.

Key words: magnetron sputtering, anatse TiO2, depositing rate, elliptical method

CLC Number: 

  • O469
[1] Fujishima A, Honda K.Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[2] 廖瑞金, 吕程, 吴伟强, 等. 纳米TiO2改性绝缘纸的绝缘性能[J]. 高电压技术, 2014, 40(07): 1932-1939.
[3] 王晓栋, 沈军, 王生钊, 等. 椭偏光谱法研究溶胶-凝胶TiO2薄膜的光学常数[J]. 物理学报, 2009, 58(11): 8027-8032.
[4] Choi S, Lee M S, Park D W.Photocatalytic performance of TiO2 /V2O5 nanocomposite powder prepared by DC arc plasma[J]. Current Applied Physics, 2014, 14(3): 433-438.
[5] Zhang X J, Zuo G Q, Lu X, et al.Anatase TiO2 sheet-assisted synthesis of Ti3+ self-doped mixed phase TiO2 sheet with superior visible-light photocatalytic performance: Roles of anatase TiO2 sheet[J]. Journal of Colloid And Interface Science, 2017, 490(15): 774-782.
[6] 石凯, 韩丽花, 李孟宇, 等. 具有可见光响应混晶TiO2光催化剂的制备及光催化性能研究[J]. 应用化工, 2019, 48(3): 578-581.
[7] 韩小琴, 朱燕舞, 王燕, 等. 氮掺杂改性TiO2多孔薄膜光催化降解4-硝基苯酚[J]. 材料科学与工程学报, 2017, 35(6): 975-981.
[8] 余家国, 赵修建, 陈文梅, 等. TiO2/SiO2纳米薄膜的光催化活性和亲水性[J]. 物理化学学报, 2001(3): 261-264.
[9] 辛荣生, 苏雷生, 林钰, 等. 磁控溅射Nb掺杂TiO2薄膜的研究[J]. 真空科学与技术学报, 2018, 38(6): 521-526.
[10] 孔少奇, 宋选民, 张纯旺, 等. 磁控溅射制备的Au-TiO2薄膜的光催化活性和光降解速率常数研究(英文)[J]. 稀有金属材料与工程, 2018, 47(11): 3316-3320.
[11] 王竹梅, 张天峰, 李月明, 等. 溶胶-凝胶法制备S掺杂TiO2纳米粉体的光催化性能[J]. 人工晶体学报, 2018, 47(4): 765-769+776.
[12] 汪鹏生, 李德权, 李洋. 水热法合成TiO2纳米花及其性能[J]. 阜阳师范学院学报(自然科学版), 2017, 34(4): 26-28.
[13] 夏雨, 吴丹, 赵遵杰, 等. 能量过滤磁控溅射制备TiO2薄膜的光催化性能研究[J]. 真空科学与技术学报, 2017, 37(7): 685-688.
[14] 常大磊, 李小松, 赵天亮, 等. 大气压射频等离子体化学气相沉积TiO2体系的发射光谱诊断[J]. 物理化学学报, 2013, 29(3): 625-630.
[15] 张敏, 林国强, 董闯, 等. 脉冲偏压电弧离子镀TiO2薄膜的力学与光学性能[J]. 物理学报, 2007(12): 7300-7308
[16] 朱晓东, 易倩, 文桂岚, 等. 锐钛矿型纳米TiO2的制备表征及光催化研究[J]. 化工新型材料, 2017, 45(6): 169-171.
[17] 刘亚丽, 吴奎, 胡毅, 等. 磁控溅射制备纳米TiO2半导体薄膜的工艺研究与晶型分析[J]. 真空, 2008(5): 38-41.
[18] 刘海鹰, 刁训刚, 王丽玲, 等. 低红外发射率TiO2/AgxCu_(1-x)/Ti/TiO2纳米多层膜[J]. 功能材料与器件学报, 2007(1): 7-12.
[19] 武素梅, 薛钰芝, 苏梦. Ti/TiO2多层膜的光电性能研究[J]. 真空, 2007(4): 29-32.
[20] Ramezani S S, Morteza A A, Jafari R.A comparison between optical properties of TiO2nanowires obtained by EMA method and experiment[J]. Physica B: Condensed Matter, 2011, 406(18): 3383-3388.
[21] 朱晓龙, 肖峻, 马孜. 氧化铪薄膜的宽光谱光学特性研究[J]. 激光与光电子学进展, 2016, 53(3): 268-273.
[22] Vukoman J, Boana O, Anka T P, et al.Optical properties of titanium oxide films obtained by cathodic arc plasma deposition[J]. Plasma Science and Technology, 2017, 19(12): 115-122.
[23] 张海丰, 张鹏宇, 赵贵龙, 等. 纳米二氧化钛的制备及其应用研究进展[J]. 东北电力大学学报, 2014, 34(2): 52-56.
[24] 田民波, 李正操. 薄膜技术与薄膜材料[M]. 北京: 清华大学出版社, 2006: 230-232.
[25] 吴自勤, 王兵, 孙霞. 薄膜生长(第2版)[M]. 北京: 科学出版社, 2013: 331.
[26] Bandar Astinchap, Rostam Moradian, Katayon Gholami.Effect of sputtering power on optical properties of prepared TiO2 thin films by thermal oxidation of sputtered Ti layers[J]. materials Science in Semiconductor Processing, 2017, 63: 169-175
[1] WEI Xian-lu, GONG Chen-yang, XIAO Jian-rong. Structure and Optical Properties of MoS2 Thin Films Prepared by RF Reactive Magnetron Sputtering [J]. VACUUM, 2020, 57(5): 11-13.
[2] WANG Xiao-ming, E Dong-mei, WU Jun-sheng, ZHANG Xu-yue, ZHOU Yan-wen. Simulation of MagnetronSputtering Enhancement Based on Plasma [J]. VACUUM, 2020, 57(3): 5-6.
[3] ZHANG Qing-fang, YI Yong, LUO Jiang-shan. Effect of Sputtering Power on Microstructure of Er Thin Films Deposited by Magnetron Sputtering [J]. VACUUM, 2020, 57(3): 17-20.
[4] WU Hou-pu, TIAN Qin-wen, TIAN Xiu-bo, GONG Chun-zhi. Development and Discharge Behavior of Novel Double Bipolar Pulse High Power Impulse Magnetron Sputtering System [J]. VACUUM, 2019, 56(6): 1-6.
[5] LIAO Rong, DENG Yong-jian, WANG Jia-ju, ZHAO Fei-lan, ZHENG Ruo-qian, LIU Hui-jun, KE Jia-chong. Preparation and Properties of High Dielectric Hafnium Oxide Thin Film [J]. VACUUM, 2019, 56(5): 52-55.
[6] WU Shi-cai, SHANG Xin-de. Application of Flexible Coating Materials in Circuit Board Industry [J]. VACUUM, 2019, 56(5): 65-68.
[7] LUO Jun-yao, LIU Guang-zhuang, YANG Zhao, LI Bao-chang, TA Shi-wo. Study on Magnetron Sputtering and Wet Etching Technology of Chromium Silicon Thin Film Resistive Layer [J]. VACUUM, 2019, 56(5): 61-64.
[8] WU Xing, JIANG Ai-hua, CHENG Yong. Effect of RF Power on Structure and Mechanical Properties of DLC Films [J]. VACUUM, 2019, 56(4): 34-36.
[9] WANG Huai-qian, JIANG Hong-wei. TiN Nano-Thin Films Prepared by Magnetron Sputtering Reaction [J]. VACUUM, 2019, 56(4): 37-39.
[10] LIU Chan, WANG Dong-wei, LI Xiao-min, WU Ying-tong, HUANG Mei-dong. Influence of pulsed negative bias on structure and properties of carbon films grown by magnetron sputtering [J]. VACUUM, 2019, 56(2): 69-73.
[11] WANG Fu-zhen, CHEN Da-min, YAN Yuan-quan. The cleaning sources with argon ions using vacuum arc discharge technology [J]. VACUUM, 2019, 56(1): 27-33.
[12] WANG Xiao-ran, MA Yan-bin, DUAN Ping, LI Ru-yong, ZHUANG Bi-hui, CUI Min, YUAN An-juan, DENG Jin-xiang. Effect of Mg doping concentration on Ga2O3 thin films prepared by RF magnetron sputtering [J]. VACUUM, 2018, 55(6): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .