欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (1): 45-50.doi: 10.13385/j.cnki.vacuum.2021.01.10

• Vacuum Acquisition System • Previous Articles     Next Articles

Experimental Study on Vacuum Adsorption Characteristics of Molecular Sieves at Liquid Nitrogen Temperature

BAI Biao-kun1, CHEN Shu-ping1, CHEN Lian2, JIN Shu-feng1, SHI Qing-zhi1, MENG Yue1   

  1. 1. College of Petroleum and Chemical Engineering, Lanzhou University of Technology, Lanzhou 730050;
    2. Lanzhou Institute of Physics, Lanzhou 730000, China
  • Received:2019-11-22 Online:2021-01-25 Published:2021-01-26

Abstract: In order to investigate the adsorption characteristics of molecular sieve adsorbents used in the interspace of cryogenic vessels, the adsorption isotherms of the 4A, 5A and 13X molecular sieves for N2, O2 single components and air were obtained by static expansion method. In the range of 10-3~103Pa, the differences in adsorption capacity of different molecular sieves for gases were compared, and the adsorption mechanism of molecular sieves was explored. The results show that the 5A and 13X molecular sieves have strong adsorption performance for N2 and O2 under vacuum conditions at liquid nitrogen temperature, the absorption capacity can reach 104Pa·L/g magnitude. The adsorption capacity of O2 in the 4A molecular sieve can also reach 104Pa·L/g magnitude, while the 4A molecular sieve has poor nitrogen adsorption ability when the equilibrium pressure is higher, the saturated adsorption capacity reaches only about 300Pa·L/g. The adsorption capacity of the three molecular sieves for air follows 13X molecular sieve>5A molecular sieve>4A molecular sieve, and at liquid nitrogen temperature, the adsorption rate of 5A molecular sieve on air is higher than that of 13X molecular sieve. Studying the vacuum adsorption characteristics of molecular sieves at low temperatures helps to guide the application of molecular sieves in cryogenic vessels, which also provides a reference for the design of low temperature molecular sieves.

Key words: molecular sieves, cryogenic vessels, static expansion method, adsorption isotherm, adsorption capacity

CLC Number: 

  • TB79
[1] 夏莉, 陈树军, 谭粤, 等. 高真空多层绝热低温容器中吸气剂的应用[J]. 广州化工, 2013(9): 13-14.
[2] 成永军, 李得天, 张涤新, 等. 极高真空校准室内残余气体的成分分析[J]. 真空科学与技术学报, 2010, 30(1): 54-59.
[3] 冯焱, 董猛, 吴晓斌, 等. 基于分压力测量的真空材料放气率测试方法研究[J]. 真空, 2013, 50(4): 49-52.
[4] Abdel-Samad S, Abdel-Bary M, Kilian K.Residual gas analysis in the TOF vacuum system[J]. Vacuum, 2005, 78(1): 83-89.
[5] 丁配之, 王国栋, 陈长琦, 等. 低温吸附泵用椰壳活性炭材料的结构测试分析[J]. 真空科学与技术学报, 2019, 39(6): 472-476.
[6] 王健, 林志民, 冯慧华, 等. 高分子吸氢剂直接替代PdO应用于高真空多层储罐的吸氢性能[J]. 真空科学与技术学报, 2017, 37(5): 443-448.
[7] Chen S J, Wang R S, Li X D.Experimental investigation and theoretical analysis on measurement of hydrogen adsorption in vacuum system[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4347-4353.
[8] Hong S S, Shin Y H, Kim J T.Residual gas survey of stainless steel 304 extreme high vacuum chamber with hot cathode ionization gauge[J]. Measurement, 2008, 41(9): 1026-1031.
[9] Ishikawa Y, Nemani V. An overview of methods to suppress hydrogen outgassing rate from austenitic stainless steel with reference to UHV and EXV[J]. Vacuum, 2003, 69(4): 501-502.
[10] 赵振国. 吸附作用应用原理[M]. 北京: 化学工业出版社, 2005: 71-75.
[11] 朱崇业, 钟爱莲, 胡强, 等. ZSM-5分子筛在低温低压下对N2的吸附性能研究[J]. 真空, 1988(1): 33-37.
[12] 刘冕, 黄丽, 胡石林, 等. 活性炭对氢气中O2与N2的吸附性能研究[J]. 当代化工, 2015, 44(3): 470-472.
[1] SUN Lu-yao, CHEN Guang-qi. Experimental Study on Adsorption Isotherms of Activated Carbon at Low Temperature and Pressure [J]. VACUUM, 2020, 57(6): 69-74.
[2] LI Xiao-feng, HUANG Qiang-hua, CHEN Guang-qi, HE Xiao-dong, ZHU Ming. Simulated Experimental Study on Vacuum Life of Cryogenic Insulated Cylinders [J]. VACUUM, 2020, 57(1): 56-61.
[3] LI Xiao-feng, CHEN Guang-qi, BAI Yang, REN Gai-hong. Experimental study on adsorption characteristics of molecular sieve under low temperature and low pressure [J]. VACUUM, 2019, 56(2): 45-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Jie, KANG Song, DONG Chang-kun. Study on Working Performance for Low Pressure Carbon Nanotube Micro Sensor[J]. VACUUM, 2021, 58(1): 1 -5 .
[2] LI Fu-song, WANG Wen-jun, LIN Wei-jian, PAN Ya-juan. Design of Intelligent Screw Air Compressor Performance Testing System[J]. VACUUM, 2021, 58(1): 19 -22 .
[3] YANG Nai-heng. Analysis and Discussion on the Vacuum Pump for Vacuum Degassing[J]. VACUUM, 2021, 58(1): 29 -32 .
[4] WANG Xun. Vacuum Measurement and Application for Aerospace[J]. VACUUM, 2021, 58(1): 15 -18 .
[5] ZHANG Shi-wei, SUN Kun, HAN Feng. Discussion on Several Common Problems in Screw Vacuum Pump Design[J]. VACUUM, 2021, 58(1): 23 -28 .
[6] . [J]. VACUUM, 2020, 57(6): 84 -86 .
[7] CHAI Hao, JIA Jun-wei, WANG Bin, LI Peng, CUI Shuang, FENG Xu, LI Wei, LIU Zhan, LI Shao-fei, CHEN Quan. Design and Characteristic Study on Compact Microwave ECR Plasma Source[J]. VACUUM, 2021, 58(1): 6 -9 .
[8] ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation[J]. VACUUM, 2021, 58(1): 10 -14 .
[9] CAI Xiao, CAO Zeng, ZHANG Wei, LI Rui-jun, HUANG Yong. Development of Pre-pumping System for Vacuum Chamber of HL-2M[J]. VACUUM, 2021, 58(1): 33 -37 .
[10] ZHANG Yu-chen, ZHANG Hai-bao, CHEN Qiang. Review on Semi-Conductive ZnO Thin Film Prepared by HiPIMS[J]. VACUUM, 2021, 58(1): 72 -77 .