欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (3): 57-62.doi: 10.13385/j.cnki.vacuum.2022.03.12

• Thin Film • Previous Articles     Next Articles

Research and Prospect on Surface Modification of Agricultural Machinery Farming Parts

YUAN Ren-yue, BAI Xue-wei, LI Hao-zhe, SUN Shi-jie, ZHAI Yan-kun   

  1. College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
  • Received:2021-05-19 Online:2022-05-25 Published:2022-06-01

Abstract: The performance of agricultural machinery farming parts is seriously affected due to wear failure, and the development of agricultural mechanization is restricted. Surface modification technology has become an important technical means to improve the wear resistance of farming machine parts owing to its advantages of flexible technology, strong applicability, convenient operation and low cost. The surface modification technology has been widely used in agricultural machinery,such as thermal spraying, spray welding, surfacing welding, cladding and biomimetic technology. The advantages and disadvantages of different technologies and their applicable conditions are different. This paper introduces the research situation of surface modification technology in improving the wear resistance and surface performance of farming machine parts, and puts forward its application prospect and development trend.

Key words: farming machine parts, surface modification, wear failure, wear resistance

CLC Number: 

  • TG176
[1] 宋月鹏, 王伟, 高东升, 等. 基于表面工程技术制备农机刃具的研究现状[J]. 中国农机化学报, 2018, 39(1): 27-31.
[2] 葛宜元, 庄明辉, 张金波, 等. 典型表面工程技术在农机耕作部件上的应用现状[J]. 农机使用与维修, 2015(9): 35-37.
[3] 苏彬彬, 徐杨, 简建明. 农业机械耐磨件发展及研究现状[J]. 热处理技术与装备, 2013, 34(5): 53-58.
[4] 贾洪雷, 王万鹏, 陈志, 等. 农业机械触土部件优化研究现状与展望[J]. 农业机械学报, 2017, 48(7): 1-13.
[5] 张金波, 王晨超, 王洋, 等. 农业耕作机械触土部件土壤磨料磨损研究[J]. 现代化农业, 2015(1): 52-53.
[6] 翟鹏飞. 耕作部件表面熔覆硬质合金工艺及其耐磨性的研究[D]. 太原: 山西农业大学, 2013.
[7] 丘先堂, 张雪莉, 余雷. 金属材料磨损失效及防护措施分析[J]. 山西冶金, 2017, 40(5): 115-117.
[8] 马云飞, 张旭光. 金属材料磨损失效及防护[J]. 云南化工, 2017, 44(9): 59-60+70.
[9] 程永红. 金属材料磨损失效及防护的探讨[J]. 中国金属通报, 2017(8): 62-63.
[10] 薛继顺, 徐晓莹, 梁法双. 农业机械零件磨损特点分析及减少磨损的措施[J]. 农机使用与维修, 2016(9): 46.
[11] 李和宾. 金属材料磨损失效及防护问题探析[J]. 山东工业技术, 2017(17): 16.
[12] 黄建洪, 刘东雨, 李凌云, 等. 农机零件的磨损、选材及热处理[M]. 北京: 机械工业出版社, 2013.
[13] 乔新义, 吕玉芬, 汪瑞军. 热喷涂技术在农机工程材料延寿中的应用现状[J]. 热喷涂技术, 2013, 5(4): 1-5+59.
[14] 胡随芯, 秦训鹏, 胡泽启, 等. 热作模具堆焊修复再制造技术发展现状与趋势[J]. 热加工工艺, 2019, 48(5): 10-16.
[15] YU H L, XU Y, SHI P J, et al.Characterization and nano-mechanical properties of tribofilms using Cu nanoparticles as additives[J]. Surface and Coatings Technology, 2008, 203(1-2): 28-34.
[16] KOBAYASHI A, YANO S, KIMURA H, et al.Fe-based metallic glass costings produced by smart plasma spraying process[J].Mater. Sci. Eng. B, 2008, 148(1-3): 110-148.
[17] 朱灵晓. 等离子喷涂镍基涂层及其在农业刀具上的应用[D]. 保定: 河北农业大学, 2014.
[18] 赵建杰. 热喷涂硬质涂层旋耕刀具磨损性能研究[D]. 长沙: 湖南农业大学, 2018.
[19] 黄海鸿, 汤杰, 钱正春. 曲轴再制造耐磨熔覆层工艺参数优化[J]. 中国机械工程, 2018, 29(21): 2606-2614.
[20] 黄诗铭, 郭鹏, 朱平, 等. 等离子弧喷焊原位TiN颗粒增强复合材料强化层工艺参数优化[J]. 焊接技术, 2020, 49(2): 47-49.
[21] 徐建飞, 邹德永. 喷焊技术在钢体PDC钻头表面硬化中的应用[J]. 金刚石与磨料磨具工程, 2017, 37(4): 48-52.
[22] 韩照坤, 樊云飞, 赵建国, 等. 深松铲NiWC喷焊层耐磨性研究[J]. 河北农业大学学报, 2015, 38(1): 108-112+117.
[23] 郝建军, 马跃进, 刘占良, 等. 鞭式刀具的失效及火焰喷焊NiWC强化的可行性研究[J]. 农业工程学报, 2005(8): 74-77.
[24] 郝建军, 许志兴, 马跃进. 鞭式刀具火焰喷焊NiWC的耐磨粒磨损性能[J]. 焊接技术, 2005(3): 22-24.
[25] 张旭, 马跃进, 赵建国, 等.灭茬刀火焰喷焊Fe6涂层组织及耐磨性能[J]. 表面技术, 2015, 44(10): 40-45.
[26] 李庆达, 郭建永, 胡军, 等. 土壤耕作部件耐磨减阻处理的研究现状[J]. 表面技术, 2017, 46(2): 119-126.
[27] 王新年, 马春雷. 我国堆焊技术的应用及发展[J]. 民营科技, 2015(7): 236.
[28] 张校珩. 果园割草机刀片等离子堆焊层组织和耐磨研究[D]. 保定: 河北农业大学, 2018.
[29] 胡军, 张新洋, 李庆达, 等. 深松铲尖等离子堆焊涂层的制备与性能研究[J]. 农机化研究, 2014, 36(5): 205-207+217.
[30] 惠泷, 崔洪芝, 宋晓杰, 等. 等离子熔覆ZrB2-ZrC/Fe复合涂层组织及耐磨性[J]. 复合材料学报, 2017, 34(11): 2500-2508.
[31] 韩照坤. 深松铲等离子熔覆镍基复合涂层耐磨性研究[D].保定:河北农业大学,2015.
[32] DEBROY T, WEI H L, ZUBACK J S, et al.Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2018(92): 112-224.
[33] GU D D, MEINERS W, WISSENBACH K, et al.Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.
[34] ZHONG M, LIU W.Laser surface cladding: the state of the art and challenges[J]. Proceedings of the Institution of Mechanical Engineers, 2010, 224(5): 1041-1060.
[35] ANSARI M, SOLTANI R, SOHI M H, et al.Microstructural and hardness study of pulsed Nd: YAG laser surface alloyed aluminum with iron[J]. Metallurgical and Materials Transactions, 2016, 47(4): 1698-1704.
[36] ANSARI M, SOHI M H, SOLTANI R, et al.Effect of pulsed Nd:YAG laser re-melting on chromium surface alloyed AA6061-T6 aluminum[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(1-4): 285-291.
[37] ZHU L X, HAO J J, GAO L, et al.Application of TiAl(CN)metal ceramic coating by reactive nitrogen-arc cladding on stubble-cleaning cutter[J]. Energy Research and Power Engineering, 2013(341-342): 838-842.
[38] 董升涛, 胡军, 李庆达. 深松铲尖等离子堆焊涂层组织结构及性能研究[J]. 黑龙江八一农垦大学学报, 2016, 28(4): 85-88+139.
[39] 孟亮, 李雄, 黄永俊, 等. 激光淬火及熔覆技术提高柑橘枝粉碎机65Mn钢锤片耐磨性[J]. 农业工程学报, 2018, 34(17): 54-60.
[40] GAO K, SUN Y H, GAO R F, et al.Application and prospect of bionic non-smooth theory in drilling engineering[J]. Petroleum Exploration and Development Online, 2009, 36(4): 519-522.
[41] 巴一, 战金明, 师文庆, 等. 激光加工技术在农机制造中应用的研究进展[J]. 南方农机, 2020, 51(5): 7-14.
[42] 肖爱红, 邱长军, 李学兵. 激光表面改性技术及其应用综述[J]. 机械制造, 2006(3): 59-61.
[43] 牟雪雷, 于磊, 甘露, 等. 激光加工技术在农机制造中的应用及发展[J]. 农机化研究, 2011, 33(6): 249-252.
[44] 张云霞. 激光加工技术在农业机械制造中的应用[J]. 农技服务, 2009, 26(3): 145-146.
[45] 黄永俊. 激光技术在农业机械制造中的应用[J]. 农机化研究, 2008(6): 242-244.
[46] 王宏立. 65Mn钢表面激光熔覆铁基合金组织及摩擦磨损性能[J]. 应用激光, 2016, 36(4): 385-390.
[47] 田永财. 旋耕机刀片表面激光熔覆工艺及其耐磨性研究[D]. 大庆: 黑龙江八一农垦大学, 2016.
[48] 叶鹏云. 割草机刀片激光表面强化的研究[D]. 福州: 福建农林大学, 2016.
[49] 陈华明, 杨洲, 孙健峰, 等. 基于选区激光熔化的EDEM仿生开沟器耕作性能研究[J]. 农机化研究, 2020, 42(7): 38-44.
[50] 石林榕, 赵武云, 孙伟, 等. 马铃薯仿生挖掘铲减阻性能研究[J]. 干旱地区农业研究, 2018, 36(3): 286-291.
[51] 邓涛, 常影, 赵玉山, 等. 铧式犁表面仿生改进的优化研究[J]. 吉林农业科技学院学报, 2018, 27(1): 22-25+116-117.
[52] 益爱丽, 廖宇兰, 吕凯英, 等. 一种木薯收获机仿生挖掘铲的设计方法[J]. 农机化研究, 2018, 40(10): 63-68.
[53] 赵萍, 赵吉喆, 樊昱, 等. 马铃薯仿生挖掘铲的设计与有限元静力学分析[J]. 中国科技论文, 2017, 12(22): 2543-2548.
[54] 王金武, 李响, 高鹏翔, 等. 胡萝卜联合收获机高效减阻松土铲设计与试验[J/OL]. 农业机械学报: 1-14[2020-04-13].http://kns.cnki.net/kcms/detail/11.1964.S.20200403.1112.012.html.
[55] 王少伟, 李善军, 张衍林, 等. 鼹鼠趾仿生及表面热处理提高齿形开沟刀减阻耐磨性能[J]. 农业工程学报, 2019, 35(12): 10-20.
[56] 李晓鹏, 廖敏, 胡奔, 等. 马铃薯仿生挖掘铲片及其减阻特性研究[J]. 农机化研究, 2019, 41(6): 19-25+31.
[57] 蒋锐, 陈阳, 于成信, 等. 仿蟋蟀切齿叶减阻灭茬刀片设计与试验[J]. 工程设计学报, 2018, 25(4): 409-419.
[58] 邱兆美, 张海峰, 张伏, 等. 基于蚯蚓体表特征的仿生深松铲设计及分析[J]. 江苏农业科学, 2018, 46(4): 210-212.
[1] SUN Fei, Wang Lei, He Yun-peng, BA De-chun, SONG Gui-qiu, LIN Zeng. Research Progress of Fretting Damage and Interface Strengthening in Dental Implant System [J]. VACUUM, 2020, 57(5): 32-37.
[2] ZHONG Li, SHEN Li-ru, CHEN Mei-yan, LIU Tong, DAN Min, JIN Fan-ya. Study on Tribological Properties of (Ti, Cr) N Films [J]. VACUUM, 2020, 57(2): 27-32.
[3] LI Xiang, LAI You-bin, YANG Bo, WANG Dong-yang, SUN Ming-han, WU Hai-long,YUAN Ren-yue, SUN Shi-jie. Application Status and Prospect of Cladding Technology on Soil-engaging Components of Agricultural Machinery [J]. VACUUM, 2020, 57(1): 83-87.
[4] WU Zhong-can, LIU Liang-liang, TANG Wei; YANG Chao, MA Zheng-yong. Fabrication and Properties of Robust Superhydrophobic F-DLC Coatings [J]. VACUUM, 2019, 56(6): 30-35.
[5] WANG Di, LIN Song-sheng, LIU Ling-yun, YANG Hong-zhi, JIANG Bai-ling, XUE Yu-na, ZHOU Ke-song. Research Progress of Surface Treatment Technology on Fatigue Properties of Titanium Alloy [J]. VACUUM, 2019, 56(6): 36-42.
[6] RAN Biao, LI Liu-he. The development and application of anode layer ion source [J]. VACUUM, 2018, 55(5): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .