VACUUM ›› 2024, Vol. 61 ›› Issue (3): 40-45.doi: 10.13385/j.cnki.vacuum.2024.03.07
• Vacuum Acquisition System • Previous Articles Next Articles
SONG Xin, GUO Jian-zhang
CLC Number: TH48
[1] 宋贺生. 新型节能真空设备——射流真空泵[J].真空, 1995(6): 37-40. [2] 吴佳琪. 气液射流泵抽气特性的多参数分析[D].沈阳:东北大学, 2017. [3] 乌骏, 袁丹青, 王冠军, 刘吉春. 射流泵的发展现状与展望[J]. 排灌机械, 2007(2): 65-68. [4] GEBOUSKÝ O, MAŘÍK K, HAIDL J, et al. Enhancement of gas entrainment rate in liquid-gas ejector pump[J]. Chemical Engineering Research and Design,2023,189: 117-125. [5] HAIDL J, MARIK K, MOUCHA T, et al.Hydraulic characteristics of liquid-gas ejector pump with a coherent liquid jet[J]. Chemical Engineering Research and Design,2021, 168: 435-442. [6] LI C H, ZHANG J J, HE J Z, et al.Gas-liquid hydrodynamics in a self-suction jet reactor with or without swirling addition[J]. Chemical Engineering Science, 2022, 247: 117059. [7] GIRBA E A, KORABLEVA O N.Determination of injection ratio of liquid-gas injection apparatuses[J]. Chemical and Petroleum Engineering, 2021, 57(7/8): 538-542. [8] YADAV R L, PATWARDHAN A W.Design aspects of ejectors: effects of suction chamber geometry[J]. Chemical Engineering Science, 2008, 63(15): 3886-3897. [9] 李同卓, 蒋楠, 廖翔. 并联式液气射流泵内部流场数值模拟[J]. 中国科技信息, 2013(12): 158-159. [10] LI C, LI Y Z.Investigation of entrainment behavior and characteristics of gas-liquid ejectors based on CFD simulation[J]. Chemical Engineering Science,2011,66(3): 405-416. [11] 王佼, 王迎樑, 张峰. 吸入室直径对液气射流泵流场特性影响的数值模拟[J]. 液压与气动, 2015(9): 43-46. [12] 高贵军, 邢亚东, 王迎樑.喉嘴段收缩半角对液气射流泵流场特性影响的数值研究[J].真空科学与技术学报, 2020, 40(2): 174-179. [13] 陈文. 基于CFD模拟的液气射流泵卷吸特性研究与设计优化[D]. 沈阳:东北大学, 2014. [14] 郑许浩翔. 基于CFD的水喷射泵的数值模拟研究[D].沈阳:东北大学, 2013. [15] 李帅. 回路反应器中文丘里喷射器内气液的流动和混合特性研究[D].青岛:青岛科技大学, 2019. [16] 邢日. 液气两相射流泵抽取不凝气3D仿真研究[D].济南:山东大学, 2020. [17] 杨雪龙, 龙新平, 肖龙洲, 等. 不同湍流模型对射流泵内部流场模拟的影响[J]. 排灌机械工程学报, 2013, 31(2): 98-102. [18] 魏淑惠, 关连旭, 朱云伟. 喷射泵湍流场及外特性数值模拟[J]. 科学技术与工程, 2011, 11(21): 5016-5020. [19] 秦敬轩, 郑平, 陈旭.考虑温度相变气液喷射器喷射性能瞬态模拟[J]. 化学工程, 2018, 46(2): 41-46. [20] 周凌九, 袁玲丽, 射流泵. 内部流动计算中不同湍流模拟方法的比较[J]. 排灌机械工程学报, 2013, 31(1): 25-30. [21] 吴波. 液气射流泵性能研究与数值模拟[D].成都:西南石油大学, 2017. [22] WANG X D, LI H, DONG J L, et al.Numerical study on mixing flow behavior in gas-liquid ejector[J]. Experimental and Computational Multiphase Flow, 2020, 3: 108-112. [23] PARIVAZH M M, RAHMANI M, AKRAMI M.Numerical investigation on a liquid-gas ejector for carbon dioxide removal using amine solution: hydrodynamics and mass transfer evaluation[J]. Applied Sciences, 2022, 12(9): 4485. |
[1] | YU Da-yang, WU Gai. Numerical Simulation of the Influence of Gas Distribution and Film Deposition Process in MOCVD Reactor with Large-sized Square Carrier [J]. VACUUM, 2024, 61(2): 22-28. |
[2] | HE Tian-yi, YUE Xiang-ji, ZHANG Zhi-jun, BA De-chun, FENG Xiao-rong, YANG Fan. Numerical Simulation of Gas Flow in a Fixed Pitch Screw Vacuum Pump [J]. VACUUM, 2024, 61(1): 52-57. |
[3] | XING Yin-long, WU Jie-feng, PEI Shi-lun, LIU Zhi-hong, LI Bo, LIU Zhen-fei, MA Jian-guo. Study on the Forming Technology of Boat-shaped High Frequency Cavity Shell [J]. VACUUM, 2023, 60(6): 78-83. |
[4] | LI Ping-chuan, XU Li, ZHAO Jie, ZHANG Fan, XIONG Si-wei, JIAN Yi, ZHANG Zheng-hao, TANG De-li. Numerical Simulation and Experimental Research on Miniaturized Anode Layer Thruster [J]. VACUUM, 2023, 60(4): 36-41. |
[5] | WANG Gui-peng, HUANG Yu-xing, QU Shao-fen, GAO Guang-wei, XIE Yuan-hua, LIU Kun, BA De-chun. Study on Influence of the Change of Inlet and Outlet Angle of Impeller Blade of Vacuum Heat Treatment Furnace on Cooling Efficiency [J]. VACUUM, 2022, 59(5): 63-68. |
[6] | FANG Ming-yuan, WU Yue, ZHANG Yang, XU Zhong-xu. Simulation on Thermal Comfort of Astronaut Wearing Space Suit Under the Condition of Cabin Pressure Loss [J]. VACUUM, 2022, 59(4): 80-85. |
[7] | LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15. |
[8] | WANG Jun-wei, GONG Jie, DING Wen-jing, XU Jing-hao, GU Miao, ZHANG Li-ming. Numerical Simulation and Analysis of Spatial Rapid Decompression Process Based on Dynamic Grid [J]. VACUUM, 2022, 59(2): 32-37. |
[9] | LI Cheng-ming, SU Ning, LI Lin, YAO Wei-zhen, YANG Shao-yan. Flow Field Analysis and Large-Scale Material Growth in a Vertical Graded Varying Velocity Hydride Vapor Phase Epitaxy(HVPE) Reactor [J]. VACUUM, 2021, 58(2): 1-5. |
[10] | ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow [J]. VACUUM, 2021, 58(1): 38-44. |
[11] | KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84. |
[12] | ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59. |
[13] | ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79. |
[14] | DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58. |
[15] | CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58. |
|