欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (3): 40-45.doi: 10.13385/j.cnki.vacuum.2024.03.07

• Vacuum Acquisition System • Previous Articles     Next Articles

Research on the Pumping Performance of a Multi-stage Series Nozzle Liquid-gas Jet Pump Based on Fluent

SONG Xin, GUO Jian-zhang   

  1. College of Mechanical and Electrical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
  • Received:2023-05-11 Published:2024-06-04

Abstract: In order to improve the pumping performance of the liquid-gas jet pump, it is proposed to install a multi-stage series nozzle behind the main nozzle of the liquid-gas jet pump. Numerical simulations of the gas-liquid two-phase fluid movement in the conventional liquid-gas jet pump and the multi-stage series nozzle liquid-gas jet pump were conducted using Fluent software. Under the same operating conditions, a comparative analysis was conducted on the pumping power, pressure field distribution, velocity field distribution, and gas phase volume distribution of two liquid-gas jet pumps. The results show that at the inlet pressure (gauge pressure) of the working fluid of 0.3 MPa, 0.35 MPa and 0.4 MPa, the pumping performance of the multi-stage series nozzle liquid-gas jet pump has been improved by 18.1%, 13.4% and 20% compared to the conventional liquid-gas jet pump respectively. The multi-level structure of the nozzle promotes pulse and momentum exchange between the gas-liquid phases. The research results have certain reference significance for the optimization design and improvement of suction performance of liquid-gas jet pumps.

Key words: liquid-gas jet pump, multi-stage series nozzle, pumping performance, numerical simulation

CLC Number:  TH48

[1] 宋贺生. 新型节能真空设备——射流真空泵[J].真空, 1995(6): 37-40.
[2] 吴佳琪. 气液射流泵抽气特性的多参数分析[D].沈阳:东北大学, 2017.
[3] 乌骏, 袁丹青, 王冠军, 刘吉春. 射流泵的发展现状与展望[J]. 排灌机械, 2007(2): 65-68.
[4] GEBOUSKÝ O, MAŘÍK K, HAIDL J, et al. Enhancement of gas entrainment rate in liquid-gas ejector pump[J]. Chemical Engineering Research and Design,2023,189: 117-125.
[5] HAIDL J, MARIK K, MOUCHA T, et al.Hydraulic characteristics of liquid-gas ejector pump with a coherent liquid jet[J]. Chemical Engineering Research and Design,2021, 168: 435-442.
[6] LI C H, ZHANG J J, HE J Z, et al.Gas-liquid hydrodynamics in a self-suction jet reactor with or without swirling addition[J]. Chemical Engineering Science, 2022, 247: 117059.
[7] GIRBA E A, KORABLEVA O N.Determination of injection ratio of liquid-gas injection apparatuses[J]. Chemical and Petroleum Engineering, 2021, 57(7/8): 538-542.
[8] YADAV R L, PATWARDHAN A W.Design aspects of ejectors: effects of suction chamber geometry[J]. Chemical Engineering Science, 2008, 63(15): 3886-3897.
[9] 李同卓, 蒋楠, 廖翔. 并联式液气射流泵内部流场数值模拟[J]. 中国科技信息, 2013(12): 158-159.
[10] LI C, LI Y Z.Investigation of entrainment behavior and characteristics of gas-liquid ejectors based on CFD simulation[J]. Chemical Engineering Science,2011,66(3): 405-416.
[11] 王佼, 王迎樑, 张峰. 吸入室直径对液气射流泵流场特性影响的数值模拟[J]. 液压与气动, 2015(9): 43-46.
[12] 高贵军, 邢亚东, 王迎樑.喉嘴段收缩半角对液气射流泵流场特性影响的数值研究[J].真空科学与技术学报, 2020, 40(2): 174-179.
[13] 陈文. 基于CFD模拟的液气射流泵卷吸特性研究与设计优化[D]. 沈阳:东北大学, 2014.
[14] 郑许浩翔. 基于CFD的水喷射泵的数值模拟研究[D].沈阳:东北大学, 2013.
[15] 李帅. 回路反应器中文丘里喷射器内气液的流动和混合特性研究[D].青岛:青岛科技大学, 2019.
[16] 邢日. 液气两相射流泵抽取不凝气3D仿真研究[D].济南:山东大学, 2020.
[17] 杨雪龙, 龙新平, 肖龙洲, 等. 不同湍流模型对射流泵内部流场模拟的影响[J]. 排灌机械工程学报, 2013, 31(2): 98-102.
[18] 魏淑惠, 关连旭, 朱云伟. 喷射泵湍流场及外特性数值模拟[J]. 科学技术与工程, 2011, 11(21): 5016-5020.
[19] 秦敬轩, 郑平, 陈旭.考虑温度相变气液喷射器喷射性能瞬态模拟[J]. 化学工程, 2018, 46(2): 41-46.
[20] 周凌九, 袁玲丽, 射流泵. 内部流动计算中不同湍流模拟方法的比较[J]. 排灌机械工程学报, 2013, 31(1): 25-30.
[21] 吴波. 液气射流泵性能研究与数值模拟[D].成都:西南石油大学, 2017.
[22] WANG X D, LI H, DONG J L, et al.Numerical study on mixing flow behavior in gas-liquid ejector[J]. Experimental and Computational Multiphase Flow, 2020, 3: 108-112.
[23] PARIVAZH M M, RAHMANI M, AKRAMI M.Numerical investigation on a liquid-gas ejector for carbon dioxide removal using amine solution: hydrodynamics and mass transfer evaluation[J]. Applied Sciences, 2022, 12(9): 4485.
[1] YU Da-yang, WU Gai. Numerical Simulation of the Influence of Gas Distribution and Film Deposition Process in MOCVD Reactor with Large-sized Square Carrier [J]. VACUUM, 2024, 61(2): 22-28.
[2] HE Tian-yi, YUE Xiang-ji, ZHANG Zhi-jun, BA De-chun, FENG Xiao-rong, YANG Fan. Numerical Simulation of Gas Flow in a Fixed Pitch Screw Vacuum Pump [J]. VACUUM, 2024, 61(1): 52-57.
[3] XING Yin-long, WU Jie-feng, PEI Shi-lun, LIU Zhi-hong, LI Bo, LIU Zhen-fei, MA Jian-guo. Study on the Forming Technology of Boat-shaped High Frequency Cavity Shell [J]. VACUUM, 2023, 60(6): 78-83.
[4] LI Ping-chuan, XU Li, ZHAO Jie, ZHANG Fan, XIONG Si-wei, JIAN Yi, ZHANG Zheng-hao, TANG De-li. Numerical Simulation and Experimental Research on Miniaturized Anode Layer Thruster [J]. VACUUM, 2023, 60(4): 36-41.
[5] WANG Gui-peng, HUANG Yu-xing, QU Shao-fen, GAO Guang-wei, XIE Yuan-hua, LIU Kun, BA De-chun. Study on Influence of the Change of Inlet and Outlet Angle of Impeller Blade of Vacuum Heat Treatment Furnace on Cooling Efficiency [J]. VACUUM, 2022, 59(5): 63-68.
[6] FANG Ming-yuan, WU Yue, ZHANG Yang, XU Zhong-xu. Simulation on Thermal Comfort of Astronaut Wearing Space Suit Under the Condition of Cabin Pressure Loss [J]. VACUUM, 2022, 59(4): 80-85.
[7] LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15.
[8] WANG Jun-wei, GONG Jie, DING Wen-jing, XU Jing-hao, GU Miao, ZHANG Li-ming. Numerical Simulation and Analysis of Spatial Rapid Decompression Process Based on Dynamic Grid [J]. VACUUM, 2022, 59(2): 32-37.
[9] LI Cheng-ming, SU Ning, LI Lin, YAO Wei-zhen, YANG Shao-yan. Flow Field Analysis and Large-Scale Material Growth in a Vertical Graded Varying Velocity Hydride Vapor Phase Epitaxy(HVPE) Reactor [J]. VACUUM, 2021, 58(2): 1-5.
[10] ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow [J]. VACUUM, 2021, 58(1): 38-44.
[11] KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84.
[12] ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59.
[13] ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79.
[14] DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58.
[15] CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .