欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (6): 73-77.doi: 10.13385/j.cnki.vacuum.2022.06.13

• Measurement and Control • Previous Articles     Next Articles

Research of Quick Measurement for PVD TBCs Thickness in Industrial Production Using Ball Crater Tester

DENG Zhong-hua1,2, CHANG Zhen-dong2, XU Lei2, HU Jiang-wei1, CAI Yan2, MU Ren-de2   

  1. 1. BOE Technology Group Co., Ltd., Beijing 100016, China;
    2. AECC, Beijing Institute of Aeronautical Materias, Beijing 100095, China
  • Received:2022-04-04 Online:2022-11-25 Published:2022-12-05

Abstract: In order to test the thickness of thermal barrier coatings quickly and accurately in industrial production, this paper discusses a method of thickness measurement for PVD NiCrAlYSi coating and YSZ coating by using ball crater tester. First, The NiCrAlYSi coating and YSZ coating with thickness of 120μm was deposited on GH3039 superalloy substrate by arc ion plating and EB-PVD respectively. The relationship of particle size in polishing slurry, grinding time and dimension of ball crater was obtained. Then, according to the above experimental results, the thickness of NiCrAlYSi and YSZ coatings on superalloy specimens was measured by ball crater tester, and the results of ball crater tester and metallographical measurement were compared. The results show that the dimension of ball crater has a parabolic relation with milling time for the NiCrAlYSi coating and YSZ coating. Under the same conditions,the dimension of ball crater is the same when the size of particle in polishing slurry is 5μm and 10μm, both of which are much larger than that of the particle size of 1μm. The result of ball crater tester is highly identical with that of metallographical measurement, and the relative error is less than 6%.

Key words: thermal barrier coating, PVD, coating thickness, ball crater tester

CLC Number: 

  • TB44
[1] 薛召露, 郭洪波, 宫声凯, 等. 新型热障涂层陶瓷隔热层材料[J]. 航空材料学报, 2018, 28(2): 10-20.
[2] 朱剑琴, 赵超凡, 邱璐, 等. 热障涂层在涡轮叶片应用中的热防护有效性[J]. 航空动力学报, 2019, 34(11): 2503-2508.
[3] 宗若菲, 吴福硕, 冯晶. 稀土钽酸盐在热障涂层中的研究与应用[J]. 航空制造技术, 2019, 62(3): 20-31.
[4] 徐滨士, 刘世参. 中国材料工程大典第17卷材料表面工程[M]. 北京: 化学工业出版社, 2005: 619-620.
[5] 周俊华, 徐可北, 葛子亮. 热障涂层厚度涡流检测技术研究[J]. 航空材料学报, 2006, 26(3): 353-354.
[6] MA Z Y, ZHAO Y, LUO Z B, et al.Ultrasonic characterization of thermally grown oxide in thermal barrier coating by reflection coefficient amplitude spectram[J]. Ultrasonics, 2014, 54(4): 1004-1009.
[7] ZHAO Y, LIN L, LI X M, et al.Simultaneous determination of the coating thickness and its longitudinal velocity by ultrasonic nondestructive method[J]. NDT&E International, 2010, 43(7): 579-585.
[8] 刘颖韬, 郭广平, 曾智, 等. 红外热像无损检测技术的发展历程、现状和趋势[J]. 无损检测, 2017, 39(8): 63-70.
[9] 江海军, 陈力. 锁相热波成像技术对涂层厚度的测量[J]. 无损检测, 2017, 39(4): 38-41.
[10] WANG N G, LI C F, YANG L, et al.Experimental testing and FEM calculation of impedance spectra of thermal barrier coatings: effect of measuring conditions[J]. Corrosion Science, 2016, 107: 155-171.
[11] YANG L, ZHU W, LI C F, et al.Error and modification in thermal barrier coatings measurement using impedance spectroscopy[J]. Ceramics International, 2017, 43: 4976-4983.
[12] MANERO A, SELIMOVA A, FOULIARDA Q, et a1. Pectroscopic evaluation and damage identification for thermal barrier coatings subjected to simulated engine environments[J]. Surface and Coatings Technology, 2017, 323: 30-38.
[13] 倪立勇, 杨震晓, 马康智, 等. 等离子喷涂热障涂层厚度测量方法研究[J]. 热喷涂技术, 2015, 7(4): 22-25.
[14] 肖力伟, 谢建红, 宋凯, 等. 基于涡流法的航空发动机关键部件热障涂层厚度测量试验研究[J]. 失效分析与预防, 2020, 15(2): 101-108.
[15] 李建超, 何箐, 吕玉芬, 等. 热障涂层无损检测技术研究进展[J]. 中国表面工程, 2019, 32(2): 16-26.
[16] 冯驰, 滑翔. 红外热波技术在涡轮叶片涂层检测上的应用[J]. 应用科技, 2015, 42(1): 15-18.
[17] 李荣久, 邓畅光, 胡永俊, 等. 等离子喷涂-物理气相沉积热障涂层的表征技术研究进展[J]. 表面技术, 2020, 49(11): 124-140.
[18] 叶东东, 王卫泽. 热障涂层太赫兹无损检测技术研究进展[J]. 表面技术, 2020, 49(10): 126-137.
[19] 张德忠. 镀层和氧化膜厚度的显微镜测量技术[J]. 电镀与环保, 2006, 26(6): 33-35.
[20] 丁旺, 王春花, 孟峰, 等. 表面硬质涂层厚度检测方法研究[J]. 现代车用动力, 2018(3): 57-60.
[21] 刘海波, 王明明, 张镜斌, 等. 多弧离子镀TiN、TiAIN膜层性能的研究[J]. 热加工工艺, 2020, 49(4): 85-87.
[22] GEEU M G, WICKS M J. Ball crater testing for the measurement of the unlubricated sliding wear of wear-resistant coatings[J]. Surface and Coatings Technology, 2000, 133/134: 376-382.
[23] 王鼎君, 仲永安. 球坑仪测厚初探[J]. 陕西师大学报, 1988, 16(2): 24-26.
[24] 仲永安, 吴予似, 贾玉民. 球坑仪及其应用[J]. 物理实验, 1988, 8(2): 80-83.
[25] FILDES J M, MEYERSA S J, KILAPARTI R, et al. Improved ball crater micro-abrasion test based on a ball on three disk configuration[J]. Wear, 2012, 274/275: 414-422.
[1] WANG Dong-yuan, ZHOU Tian, CHEN Qiang, LIU Zhong-wei. Research Status and Progress of Preparation Methods of Palladium Thin Films [J]. VACUUM, 2022, 59(5): 7-13.
[2] WANG Li-zhe, CAI Yan, ZHNG Ru-jing, HE Li-min, MU Ren-de. Influence of Aluminide Coating Prepared by Chemical Vapor Depositionon High-Temperature Protective Performance of Thermal Barrier Coating on Single Crystal Superalloy [J]. VACUUM, 2022, 59(4): 56-63.
[3] CHANG Zhen-dong, DENG Zhong-hua, SUN Rong-zhen, MU Ren-de, HU Jiang-wei. Effect of Matrix Surface Microstructure on the Adhesion of PVD Coating [J]. VACUUM, 2022, 59(3): 52-56.
[4] BAI Ming-yuan, WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Phase Stability and Interfacial Bonding Strength of Rare Earth Zirconate Novel Thermal Barrier Coatings [J]. VACUUM, 2021, 58(4): 12-20.
[5] HAO Wei-jin, CHEN Rong-fa, CAO Pei, GONG Zi-yu, LI Jing, GENG Hao-ran, WANG Zi-li. Study on Friction and Wear Properties of CrAlNx Coating on Roller Surface [J]. VACUUM, 2020, 57(5): 28-31.
[6] LI Guo-hao, BA De-chun, WANG Dong, CHEN Hong-bin, ZHANG Hong-qi, DU Guang-yu. Research on Thermal Shock Performance of YSZ Coatings Deposited by EB-PVD [J]. VACUUM, 2020, 57(3): 1-4.
[7] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD [J]. VACUUM, 2018, 55(5): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .