VACUUM ›› 2025, Vol. 62 ›› Issue (6): 9-15.doi: 10.13385/j.cnki.vacuum.2025.06.02
• Thin Film • Previous Articles Next Articles
FAN Lanlan1, QIU Junjie2
CLC Number: TN33
| [1] ASHKINAZI E E, KHMELNITSKII R A, SEDOV V S, et al.Morphology of diamond layers grown on different facets of single crystal diamond substrates by a microwave plasma CVD in CH4-H2-N2 gas mixtures[J]. Crystals, 2017, 7(6): 166. [2] AKASHI N, FUJIMAKI N, SHIKATA S.Influence of threading dislocations on diamond Schottky barrier diode characteristics[J]. Diamond and Related Materials, 2020, 109: 108024. [3] AIELLO G, AVRAMIDIS K A, GANTENBEIN G, et al.Design verification of the gyrotron diamond output window for the upgrade of the ECRH system at W7-X[J]. Fusion Engineering and Design, 2021, 165: 112262. [4] KOPOSOVA E V, MYASNIKOVA S E, PARSHIN V V, et al.The absorption investigation in CVD-diamond plates and windows at 50-200 GHz[J]. Diamond and Related Materials, 2002, 11(8): 1485-1490. [5] SONG C W, JIN R, HWANG N M, et al.Deposition behavior of boron-doped diamond with varying amount of acetone by hot filament chemical vapor deposition[J]. Electronic Materials Letters, 2019, 15: 630-638. [6] ZHENG Y, LIU J, WANG J, et al.The direct-current characteristics and surface repairing of a hydrogen-terminated free-standing polycrystalline diamond in aqueous solutions[J]. Journal of Physics and Chemistry of Solids, 2019, 130: 111-119. [7] 张一卓. 新型MPCVD金刚石膜沉积装置模拟及实验研究[D]. 太原:太原理工大学, 2022. [8] VIKHAREV A L, GORBACHEV A M, LOBAEV M A, et al.Novel microwave plasma-assisted CVD reactor for diamond delta doping[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2016, 10(4): 324-327. [9] YAMADA H.Numerical simulations to study growth of single-crystal diamond by using microwave plasma chemical vapor deposition with reactive (H, C, N) species[J]. Japanese Journal of Applied Physics, 2012, 51(9R): 090105. [10] 李义锋. 新型高功率MPCVD装置研制与金刚石膜高效沉积[D]. 北京:北京科技大学, 2015. [11] 王凤英, 郭会斌, 唐伟忠, 等. 圆柱形和椭球形谐振腔式 MPCVD 装置中微波等离子体分布特征的数值模拟与比较[J]. 人工晶体学报, 2008, 37(4): 895-900. [12] 于盛旺, 范朋伟, 李义锋, 等. 椭球谐振腔式 MPCVD 装置高功率下大面积金刚石膜的沉积[J]. 人工晶体学报, 2011, 40(5): 1145-1149. [13] LI Y F, AN X M, LIU X C, et al.A 915 MHz/75 kW cylindrical cavity type microwave plasma chemical vapor deposition reactor with a ladder-shaped circumferential antenna developed for growing large area diamond films[J]. Diamond and Related Materials, 2017, 78: 67-72. [14] 李义锋, 唐伟忠, 姜龙, 等. 915 MHz 高功率 MPCVD 装置制备大面积高品质金刚石膜[J]. 人工晶体学报, 2019, 48(07): 1262-1267. [15] 唐伟忠, 于盛旺, 范朋伟, 等. 高品质金刚石膜微波等离子体 CVD 技术的发展现状[J]. 中国材料进展, 2012, 31(8): 33-39. [16] SILVA F, HASSOUNI K, BONNIN X, et al.Microwave engineering of plasma-assisted CVD reactors for diamond deposition[J]. Journal of Physics: Condensed Matter, 2009, 21(36): 364202. [17] 谷昊周. 微波等离子体化学气相沉积谐振腔的数值仿真与研究[D]. 杭州:杭州电子科技大学, 2022. [18] HIRAKI A, KAWARADA H, WEI J, et al.Preparation and characterization of wide area, high quality diamond film using magnetoactive plasma chemical vapour deposition[J]. Surface and Coatings Technology, 1990, 43: 10-21. [19] 胡海天,邬钦崇,盛奕建. 微波等离子体化学气相沉积金刚石膜[J].物理,1996(11):688-691. [20] 蔡让岐,陈光华,宋雪梅,等.纳米金刚石涂层上化学气相沉积金刚石薄膜的场电子发射[J].科学通报, 2003, 48(12): 1282-1285. [21] 张帅,安康,杨志亮,等. 新型MPCVD沉积模式制备高均匀性的D100 mm金刚石薄膜[J]. 真空与低温, 2022, 28(5): 549-555. [22] 张青. 75 kW、915 MHz MPCVD装置生长单晶金刚石的研究[D]. 武汉:武汉工程大学, 2022. [23] BOLSHAKOV A P, YUROV V Y, FEDOROVA I A, et al.Growth of homoepitaxial single crystal diamond by microwave plasma CVD in H2-CH4-O2 gas mixtures at high microwave power densities[J]. Diamond and Related Materials, 2024, 150: 111721. [24] YANG Z, AN K, FENG X, et al.Explore the growth mechanism of high-quality diamond under high average power density in the MPCVD reactor[J]. Materials Science and Engineering: B, 2024, 302: 117248. [25] 李廷垟,翁俊,张青. 氧气浓度对单晶金刚石生长的影响[J]. 化学工程与装备,2022(11):6-7. [26] EMELYANOV A A, PINAEV V A, PLOTNIKOV M Y, et al.Effect of methane flow rate on gas-jet MPCVD diamond synthesis[J]. Journal of Physics D: Applied Physics, 2022, 55(20): 205202. [27] BOLSHAKOV A P, RALCHENKO V G, SHU G, et al.Single crystal diamond growth by MPCVD at subatmospheric pressures[J]. Materials Today Communications, 2020, 25: 101635. |
| [1] | ZHOU Mingxu, LI Jianchang. Effect of Graphite-Plate Thickness on the Temperature Field in Silicon Carbide Vacuum Sintering Furnace [J]. VACUUM, 2025, 62(4): 49-53. |
| [2] | CAI Jianing, YU Deping, GONG Xiaofei, XUE Jiaqing, ZHANG Jiacheng, ZHENG Zheng, CHEN Wenchuan. A Novel Plasma Treatment System for Simulating Hydrophilic Modification of Zirconia Implant Surfaces [J]. VACUUM, 2025, 62(3): 58-64. |
| [3] | TIAN Wenjuan, HE Xiaobin, JIAO Binbin. Research on the Technology of RF Plasma Degluing and Surface Cleaning [J]. VACUUM, 2025, 62(2): 56-61. |
| [4] | SONG Xin, GUO Jian-zhang. Research on the Pumping Performance of a Multi-stage Series Nozzle Liquid-gas Jet Pump Based on Fluent [J]. VACUUM, 2024, 61(3): 40-45. |
| [5] | YU Da-yang, WU Gai. Numerical Simulation of the Influence of Gas Distribution and Film Deposition Process in MOCVD Reactor with Large-sized Square Carrier [J]. VACUUM, 2024, 61(2): 22-28. |
| [6] | WU Hong-chen, YANG Li-yuan. Research on Pulsed Cathodic Arc Plasma and the Related Characteristics [J]. VACUUM, 2024, 61(1): 1-9. |
| [7] | HUANG Guang-hong, LI Di, LI Na, ZHEN Zhen, WANG Xin, XU Zhen-hua. Effect of H2 on the Graphene Growth at Different Stages in the Plasma Enhanced Chemical Vapor Deposition Process [J]. VACUUM, 2024, 61(1): 34-40. |
| [8] | HE Tian-yi, YUE Xiang-ji, ZHANG Zhi-jun, BA De-chun, FENG Xiao-rong, YANG Fan. Numerical Simulation of Gas Flow in a Fixed Pitch Screw Vacuum Pump [J]. VACUUM, 2024, 61(1): 52-57. |
| [9] | LI Jian-jun, SUN Zu-lai, SONG Qing-zhu, ZHANG Zhe-kui, MU Xin, GE Jia-xi, YIN Dan-feng, В.А.ШАПОВАЛОВ, XU Xiao-hai. Application of Plasma Technology in Metal Smelting Reduction and Purification [J]. VACUUM, 2023, 60(6): 47-52. |
| [10] | XING Yin-long, WU Jie-feng, PEI Shi-lun, LIU Zhi-hong, LI Bo, LIU Zhen-fei, MA Jian-guo. Study on the Forming Technology of Boat-shaped High Frequency Cavity Shell [J]. VACUUM, 2023, 60(6): 78-83. |
| [11] | ZHOU Tong, LI Peng, CAO Hong-li, ZHANG Hai-long. Plasma Cleaning Technology of Closed Channel Inside a Quartz Device [J]. VACUUM, 2023, 60(5): 51-54. |
| [12] | HUANG Chuan-xin, XIN Ji-ying, TIAN Zhong-jun, WANG Meng, LÜ Kai-kai, LIANG Lan-ju, LIU Yun-yun. Improvement of the Electrical Performance and Stability of InZnO Material and TFT by Oxygen Plasma Processing [J]. VACUUM, 2023, 60(4): 24-28. |
| [13] | GUO Fang-zhun, SHI Xiao-qian, WANG Run-cheng. Development of Compact Emission Guns for Charged Particles [J]. VACUUM, 2023, 60(4): 29-35. |
| [14] | LI Ping-chuan, XU Li, ZHAO Jie, ZHANG Fan, XIONG Si-wei, JIAN Yi, ZHANG Zheng-hao, TANG De-li. Numerical Simulation and Experimental Research on Miniaturized Anode Layer Thruster [J]. VACUUM, 2023, 60(4): 36-41. |
| [15] | WANG Gui-peng, HUANG Yu-xing, QU Shao-fen, GAO Guang-wei, XIE Yuan-hua, LIU Kun, BA De-chun. Study on Influence of the Change of Inlet and Outlet Angle of Impeller Blade of Vacuum Heat Treatment Furnace on Cooling Efficiency [J]. VACUUM, 2022, 59(5): 63-68. |
|