欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (5): 20-27.doi: 10.13385/j.cnki.vacuum.2022.05.04

• Thin Film • Previous Articles     Next Articles

Effect of Deposition Pressure on Phase Structure and High Temperature Oxidation Behavior of Aluminide Coatings

WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua   

  1. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • Received:2021-07-22 Online:2022-09-25 Published:2022-09-28

Abstract: Three kinds of aluminide coatings were fabricated by chemical vapor deposition(CVD)on the surface of the nickel-based superalloy substrates at the deposition pressure of 150, 200 and 250 mbar, respectively. The effect of deposition pressure on phase structure and high temperature oxidation behavior of the specimens with aluminide coating was systematically investigated. The phase structure, surface morphology and elemental composition of the three kinds of aluminide coatings were analyzed by XRD, SEM and EDS. The results indicate that the phase constituents of three kinds of aluminide coatings are detected to be β-NiAl. Two phases including of Ni1.04Al0.96 and Ni1.1Al0.9 are gained in the coating specimens prepared at the deposition pressure of 200 mbar. After the isothermal oxidation at 1100℃ for different dwelling times, the main phase β-NiAl transforms into γ′-Ni3Al with formation of Al2O3. Differently, the peak intensity of γ′-Ni3Al phase is the weakest for the specimens deposited at the pressure of 250 mbar. The oxidative weight gain rate of the three aluminide coatings is 0.037, 0.022 and 0.018g/(m2·h), respectively. The oxidation weight gain of the coating specimens at the deposition pressure of 150 mbar is correspondingly larger than that of the other two coating specimens. The lower deposition pressure is, the more micropores on the surface of the coating exist,and the more easily microcracks appear on the thin film of the coating surface and further form into the spllation of oxide scale after high temperature oxidation. Based on the experimental results, the coating specimens prepared at deposition pressure of 250 mbar show the best surface microstructure,elemental content and high temperature oxidation resistance.

Key words: chemical vapor deposition, aluminide coating, deposition pressure, phase structure, high-temperature oxidation

CLC Number: 

  • T32
[1] 孙健, 刘书彬, 李伟, 等. 电子束物理气相沉积制备热障涂层研究进展[J]. 装备环境工程, 2019, 16(1): 1-6.
[2] 王飞, 李飞, 李建波, 等. 空心叶片用陶瓷型芯脱芯工艺研究现状[J]. 中国材料进展, 2019, 38(3): 264-270.
[3] 张磊, 吴勇, 顿易章, 等. 采用CVD法制备空心叶片内腔铝化物涂层[J]. 金属热处理, 2019, 44(5): 124-128.
[4] GUEVEL Y L, GREGOIRE B, CRISTOBAL M J, et al.Dissolution and passivation of aluminide coatings on model and Ni-basedsuperalloy[J]. Surf.Coat.Technol., 2019, 357: 1037-1047.
[5] LENG W, PILLAI R, NAUMENKO D, et al.Effect of substrate alloy composition on the oxidation behaviour anddegradation of aluminide coatings on two Ni base superalloys[J]. Corro.Sci., 2020, 167: 108494.
[6] 夏思瑶, 顿易章, 吴勇, 等. CVD法制备铝化物涂层及其对Inconel 718合金高温持久性能及低周疲劳性能的影响[J]. 材料保护, 2020, 53(4): 41-45.
[7] 孙杰, 赵麦群, 陈雪婷, 等. 粉末渗锌工艺对螺纹紧固件渗锌速度及渗层均匀性的影响[J]. 材料保护, 2018, 51(7): 86-90.
[8] 蒙彩思, 火克莉, 陈忠, 等. 渗铝温度/时间对镍基高温合金的渗层形成影响规律[J]. 装备环境工程, 2019, 16(1): 13-16.
[9] XU Z H, WANG Z K, NIU J, et al.Phase structure,morphology evolution and protective behaviors of chemical vapor deposited (Ni,Pt)Al coatings[J]. J.Alloys Compd., 2016, 676: 231-238.
[10] XU Z H, WANG Z K, NIU J, et al.Effects of deposition temperature on the kinetics growth and protective properties of aluminide coatings[J]. J.Alloys Compd., 2015, 632: 238-245.
[11] WANG X, ZHEN Z, HUANG G H, et al.Thermal cycling of EB-PVD TBCs based on YSZ ceramic coat and diffusion aluminide bond coat[J]. J.Alloys Compd., 2021, 873: 159720.
[12] YU Z, DHARMASENA K P, HASS D D, et al.Vapor deposition of platinum alloyed nickel aluminide coatings[J]. Surf.Coat.Technol., 2006, 201(6): 2326-2334.
[13] MOHAZABIE M S Z, NOGORANI F S. The addition of zirconium to aluminide coatings:the effect of the aluminide growth mode[J]. Surf.Coat.Technol., 2019, 378: 125066.
[14] SALDANA J M, SCHULZ U, RODRIGUZ G C M, et al. Microstructure and lifetime of Hf or Zr doped sputtered NiAlCr bond coat/7YSZ EB-PVD TBC systems[J]. Surf.Coat.Technol., 2018, 335: 41-51.
[15] 阳颖飞. Pt改性铝化物涂层的制备科学及性能研究[D]. 合肥: 中国科学技术大学, 2017.
[16] 鲍泽斌, 蒋成洋, 朱圣龙, 等. 高温防护金属涂层的发展及活性元素效应[J]. 航空材料学报, 2018, 38(2): 21-31.
[17] LIU H, XU M M, LI S, et al.Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinum-modified aluminide coating[J].J. Mater.Sci.Technol., 2020, 54: 132-143.
[18] 时龙, 辛丽, 王福会, 等. 两种MCrAlY涂层与DD98M合金的互扩散行为[J]. 中国表面工程, 2018, 31(3): 86-96.
[19] NICHOLLS J R, STEPHENSON D J.High temperaturecoatings for gas turbines[J]. Surf.Eng., 1991, 3: 156-163.
[20] 刘九香, 崔向中. 两种MCrAlY涂层/DD6合金的循环氧化和互扩散行为[J]. 航空制造技术, 2017(8): 37-43.
[21] 李佩, 云海涛, 姜嫄嫄, 等. 单晶高温合金NiCoCrAlYTa涂层高温氧化行为研究[J]. 热喷涂技术, 2020, 12(2): 36-40.
[22] FROMMHERZ M, SCHOLZ A, OECHSNER M, et al.Gadolinium zirconate/YSZ thermal barrier coatings: Mixed-modeinterfacial fracture toughness and sintering behavior[J]. Surf.Coat.Technol., 2016, 286: 119-128.
[23] 戴建伟, 易军, 王占考, 等. 单晶高温合金铂改性铝化物涂层的高温氧化行为[J]. 航空材料学报, 2015, 35(5): 32-38.
[24] 张鹏飞, 李建平, 蔡妍, 等. DZ125合金真空电弧镀沉积复合涂层技术[J]. 航空材料学报, 2020, 40(2): 22-27.
[25] DAS D K.Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys[J]. Progress in Materials Science, 2013, 58(2): 151-182.
[1] CHANG Zhen-dong, ZHANG Jing, MU Ren-de, LIU De-lin, XIN Wen-bin, SONG Xi-wen. Phase Structure and Properties of a NiCrAlYSi Bond Coating Alloy [J]. VACUUM, 2022, 59(4): 41-47.
[2] WANG Li-zhe, CAI Yan, ZHNG Ru-jing, HE Li-min, MU Ren-de. Influence of Aluminide Coating Prepared by Chemical Vapor Depositionon High-Temperature Protective Performance of Thermal Barrier Coating on Single Crystal Superalloy [J]. VACUUM, 2022, 59(4): 56-63.
[3] ZHU Wei, LU Qun-xu, QIAN Wei-jin, HUANG Wei-jun, DONG Chang-kun. Study on a Novel Micro-Focus Electron Source for Carbon Nanotubes [J]. VACUUM, 2022, 59(1): 48-53.
[4] BAI Ming-yuan, WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Phase Stability and Interfacial Bonding Strength of Rare Earth Zirconate Novel Thermal Barrier Coatings [J]. VACUUM, 2021, 58(4): 12-20.
[5] TAN Fei, LIN Song-sheng, SHI Qian, DAI Ming-jiang, DU Wei, WANG Yun-cheng, LV Liang. Fabrication of NiCrAlY Coating by Arc Ion Plating and Its High Temperature Oxidation Resistance [J]. VACUUM, 2020, 57(5): 7-10.
[6] WANG Xin, XU Zhen-hua, PENG Chao, DAI Jian-wei, HE Li-min, MU Ren-de. High Temperature Protection Properties of Pt Modified Aluminide Coating on the Single Crystal Superalloy [J]. VACUUM, 2020, 57(3): 11-16.
[7] ZHAO Yan-hui, SHI Wen-bo, LIU Zhong-hai, LIU Zhan-qi, YU Bao-hai. Effect of deposition process parameters on arc ion plating [J]. VACUUM, 2018, 55(6): 49-59.
[8] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique [J]. VACUUM, 2018, 55(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .