欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2020, Vol. 57 ›› Issue (1): 1-10.doi: 10.13385/j.cnki.vacuum.2020.01.01

• •    下一篇

片上电子源的研究现状(二)*

杨威, 魏贤龙   

  1. 北京大学电子学系 纳米器件物理和化学教育部重点实验室,北京 100871
  • 收稿日期:2019-09-05 出版日期:2020-01-25 发布日期:2020-03-17
  • 通讯作者: 魏贤龙,研究员,博士生导师。
  • 作者简介:杨威(1993-),男,湖北省黄冈市人,博士生。
  • 基金资助:
    国家自然科学基金(61621061、11874608)

Review on On-Chip Electron Sources

YANG Wei, WEI Xian-long   

  1. Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
  • Received:2019-09-05 Online:2020-01-25 Published:2020-03-17

摘要: 本文主要回顾总结近数十年来片上电子源的研究工作及最新进展,包括场发射片上电子源、内场发射片上电子源以及新型热发射微型片上电子源。本文从这些片上电子源的基本原理、加工制备以及工作性能(包括工作电压、工作真空、发射电流、发射电流密度和发射效率)等方面进行比较,分析各种片上电子源的优劣点,为片上电子源的发展现状做一个简单的总结。

关键词: 片上电子源, 场发射, 内场发射, 热发射

Abstract: The article reviews and summarizes the research works in last decades and recent development of on-chip electron sources including field emission on-chip electron sources, internal field emission on-chip electron sources and new thermionic on-chip electron sources. The article compares the basic principles, fabrication and working performance of such on-chip electron sources, including working voltage, working vacuum, emission current, emission current density and emission efficiency, and analyzes the advantages and disadvantages of various on-chip electron sources. A brief summary of the development status of on-chip electron source is made through these analyses.

Key words: on-chip electron sources, field emission, internal field emission, thermionic emission

中图分类号: 

  • TN32
[1] Rüdenauer F G.Field emission devices for space applications[J]. Surface & Interface Analysis, 2007, 39(2-3): 116-122.
[2] Makela J M, Washeleski R L, King L B.Regenerable Field Emission Cathode for Spacecraft Neutralization[J]. Journal of Propulsion & Power J Propul Power, 2009, 25(4): 970-975.
[3] Wei W, Zheng Y, Yuan X, et al.Carbon nanotube field emission electron gun for traveling-wave tube: proceedings of IEEE International Vacuum Electronics Conference(IVEC), Beijing, China, April 27-29, 2015[C]. New York: IEEE, 2015.
[4] Busta H H, Chen J M, Shen Z, et al.Characterization of electron emitters for miniature x-ray sources[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003, 21(1): 344.
[5] Gorecka-Drzazga A.Miniature X-Ray Sources[J]. Journal of Microelectromechanical Systems, 2017, 26(1): 295-302.
[6] Swanson L W, Schwind G A.A Review of Field Electron Source Use in Electron Microscopes[J]. Microsc Microanal, 2005, 11(S02): 864-865.
[7] Ishikawa T, Urata T, Cho B, et al.Highly efficient electron gun with a single-atom electron source[J]. Applied Physics Letters, 2007, 90(14): 143120.
[8] Qi S, Wang X, Luo J, et al.Secondary electron emission of the cathode in high-power continuous wave magnetron tubes: proceedings of 2014 Tenth International Vacuum Electron Sources Conference(IVESC), St. Petersburg, Russia, 30 June-4 July 2014[C]. Piscataway: IEEE, 2014.
[9] Schagen P.Alternatives to thermionic emission[J]. Brit. J. Appl. Phys., 1965, 16(3): 293-303.
[10] Hartree D R.The Eniac, an Electronic Computing Machine[J]. Nature, 1946, 158(4015): 500-506.
[11] Buck D A, Shoulders K R.An approach to microminiature printed systems: Papers & Discussions Presented at the December, Eastern Joint Computer Conference: Modern Computers: Objectives, Designs, Applications, 1958[C]. New York: Assoc computing machinery, 1959.
[12] Spindt C A, Brodie I, Holland C E, et al.Vacuum Microelectronics[M]. San Diego: Academic Press Inc, 1992: 105-182.
[13] Spindt C A.A Thin‐Film Field‐Emission Cathode[J]. J. Appl. Phys., 1968, 39(7): 3504-3505.
[14] Stoner B R, Glass J T.Nanoelectronics: Nothing is like a vacuum[J]. Nature Nanotechnology, 2012, 7(8): 485-487.
[15] Han J-W, Sub Oh J, Meyyappan M.Vacuum nanoelectronics: Back to the future?-Gate insulated nanoscale vacuum channel transistor[J]. Appl. Phys. Lett., 2012, 100(21): 213505.
[16] Krysztof M, Grzebyk T, Gorecka-Drzazga A, et al.A concept of fully integrated MEMS-type electron microscope: Proceedings of the 27th International Vacuum Nanoelectronics Conference, 2014[C]. New York: IEEE, 2014.
[17] Senda S, Sakai Y, Mizuta Y, et al.Super-miniature x-ray tube[J]. Applied Physics Letters, 2004, 85(23): 5679-5681.
[18] Górecka-Drzazga A.Miniature and MEMS-type vacuum sensors and pumps[J]. Vacuum, 2009, 83(12): 1419-1426.
[19] Grzebyk T, Stasiak P, Gorecka-Drzazga A.Vacuum in microsystems - generation and measurement[J]. Optica Applicata, 2011, 41(2): 389-394.
[20] Grzebyk T, Górecka-Drzazga A, Dziuban J A.Vacuum and Residual Gas Composition MEMS Sensor[J]. Procedia Engineering, 2015, 120: 671-674.
[21] Liang Y, Yu H, Zhang H C, et al.On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS[J]. Sci. Rep., 2015, 5: 14853.
[22] Grzebyk T, Górecka-Drzazga A, Dziuban J A.Low vacuum MEMS Ion-sorption Micropump[J]. Procedia Engineering, 2016, 168: 1593-1596.
[23] Grzebyk T, Górecka-Drzazga A.Field-emission electron source for vacuum micropump[J]. Vacuum, 2011, 86(1): 39-43.
[24] Grzebyk T, Górecka-Drzazga A.Miniature ion-sorption vacuum pump with CNT field-emission electron source[J]. Journal of Micromechanics and Microengineering, 2013, 23(1): 015007.
[25] Szyszka P, Grzebyk T, Górecka-Drzazga A, et al.MEMS ion source for mass spectrometer integrated on a chip[J]. Journal of Physics: Conference Series, 2016, 773: 012099.
[26] Szyszka P, Grzebyk T, Krysztof M, et al.Miniature Mass Spectrometer Integrated on a Chip: Proceedings of 30th International Vacuum Nanoelectronics Conference, 2017[C]. New York: IEEE, 2017.
[27] Gilchrist K H, Bower C A, Lueck M R, et al.A Novel Ion Source and Detector for a Miniature Mass Spectrometer: proceedings of 6th IEEE Sensors Conference, 2007[C]. New York: IEEE, 2007.
[28] Yamaoka Y, Goto T, Nakao M, et al.Fabrication of Silicon Field Emitter Arrays with 0. 1-μm-Diameter Gate by Focused Ion Beam Lithography[J]. Japanese Journal of Applied Physics, 1995, 34(12B): 6932-6934.
[29] Thomas R N, Nathanson H C.Photosensitive field emission from silicon point arrays[J]. Appl. Phys. Lett., 1972, 21(8): 384-386.
[30] Koohsorkhi J, Mohajerzadeh S, Darbari S.Investigation of Carbon Nanotube-Based Field-Emission Triode Devices on Silicon Substrates[J]. IEEE Transactions on Nanotechnology, 2012, 11(6): 1252-1258.
[31] Hsu S H, Kang W P, Raina S, et al.Vacuum Microtriode Utilizing Nanodiamond Microtip Emitters: proceedings of the Vacuum Nanoelectronics Conference, 2015[C]. New York: IEEE, 2015.
[32] Hsu S H, Kang W P, Wisitsora-at A, et al. Nitrogen-incorporated nanodiamond vacuum field emission transistor with vertically configured self-aligning gate[J]. Diamond & Related Materials, 2012, 22: 142-146.
[33] Malesevic A, Kemps R, Vanhulsel A, et al.Field emission from vertically aligned few-layer graphene[J]. J. Appl. Phys., 2008, 104(8): 084301.
[34] Wu Z S, Pei S, Ren W, et al.Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition[J]. Adv. Mater., 2010, 21(17): 1756-1760.
[35] Zhu Y W, Zhang H Z, Sun X C, et al.Efficient field emission from ZnO nanoneedle arrays[J]. Appl. Phys. Lett. 2003, 83(1): 144-146.
[36] Zhao Q, Zhang H Z, Zhu Y W, et al.Morphological effects on the field emission of ZnO nanorod arrays[J]. Appl. Phys. Lett., 2005, 86(20): 203115.
[37] Wang X, Jiang Y, Lin Z, et al.Fabrication and emission properties of LaB6 field emission microtriodes: proceedings of SPIE - The International Society for Optical Engineering, 2009[C]. USA: SPIE - The International Society for Optical Engineering, 2009.
[38] Xu N S, Huq S E.Novel cold cathode materials and applications[J]. Materials Science and Engineering R Reports, 2005, 48(2-5): 47-189.
[39] Li N, Yan F, Pang S, et al.Novel Nanofabricated Mo Field-Emitter Array for Low-Cost and Large-Area Application[J]. IEEE Transactions on Electron Devices, 2018, 65(10): 4369-4374.
[40] Bozler C O, Harris C T, Rabe S, et al.Arrays of gated field emitter cones having 0. 32 μm tip‐to‐tip spacing[J]. Journal of vacuum science & technology B, 1994, 12(2): 629-632.
[41] Draeger N A.Examples of modifications to field emitter arrays[J]. International Journal of Nanoscience, 2013, 12(3): 1330001.
[42] Choi J O, Jeong H S, Pflug D G, et al.Fabrication of 0.1 μm gate aperture Mo-tip field-emitter arrays using interferometric lithography[J]. Appl. Phys. Lett., 1999, 74(20): 3050-3052.
[43] Spindt C A.Field-emitter-array development for microwave applications[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1996, 14(3): 1986-1989.
[45] Schwoebel P R, Spindt C A, Holland C E.Spindt cathode tip processing to enhance emission stability and high-current performance[J]. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003, 21(1 SPEC.): 433-435.
[46] Tsujino S, Paraliev M, Kirk E, et al.Homogeneity improvement of field emission beam from metallic nano-tip arrays by noble-gas conditioning[J]. Appl. Phys. Lett., 2011, 99(7): 073101.
[47] Helfenstein P, Guzenko V A, Fink H W, et al.Electron beam collimation with a 40000 tip metallic double-gate field emitter array and in-situ control of nanotip sharpness distribution[J]. J. Appl. Phys., 2013, 113(4): 043306.
[48] Schwoebel P R, Spindt C A.Field-emitter array performance enhancement using hydrogen glow discharges[J]. Appl. Phys. Lett., 1993, 63(1): 33-35.
[49] Mutata H, Shinya H, Ikeda, et al. Improvement of a number of active tips and emission measurements from individual tips in volcanostructured Spindt-type field emitter arrays: proceedings of the 2018 31st International Vacuum Nanoelectronics Conference, IVNC 2018, 2018[C]. New York: IEEE, 2018.
[50] Seo D S, Kim C O, Hong J P, et al.Laser-induced surface cleaning of molybdenum field emitter arrays for enhanced electron emission[J]. Applied Physics Letters, 2003, 82(19): 3299-3301.
[51] Schwoebel P R, Spindt C A, Holland C E.High current, high current density field emitter array cathodes[J]. Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2005, 23(2): 691-693.
[52] Spindt C A, Holland C E, Rosengreen A, et al.Field-emitter arrays for vacuum microelectronics[J]. IEEE Transactions on Electron Devices, 1992, 38(10): 2355-2363.
[53] Brodie I, Spindt C A.The application of thin-film field-emission cathodes to electronic tubes[J]. Applications of Surface Science, 1979, 2(2): 149-163.
[54] Albin S, Fu W, Varghese A, et al.Diamond coated silicon field emitter array[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999, 17(4): 2104-2108.
[55] Lee J D, Shim B C, Park B G.Silicide application on gated single-crystal, polycrystalline and amorphous silicon FEAs. I. Mo silicide[J]. IEEE Transactions on Electron Devices, 2001, 48(1): 149-154.
[56] Ding M, Sha G, Akinwande A I.Silicon field emission arrays with atomically sharp tips: Turn-on voltage and the effect of tip radius distribution[J]. IEEE Transactions on Electron Devices, 2002, 49(12): 2333-2342.
[57] Pflug D G.Low voltage field emitter arrays through aperture scaling [D]. Thesis Massachusetts Institute of Technology, 2000, 2772.
[58] Fomani A A, Guerrera S A, Velasquez-Garcia L F, et al. Toward Amp-Level Field Emission With Large-Area Arrays of Pt-Coated Self-Aligned Gated Nanoscale Tips[J]. IEEE Transactions on Electron Devices, 2014, 61(7): 2538-2546.
[59] Guerrera S A, Akinwande A I.Silicon Field Emitter Arrays with Current Densities Exceeding 100 A/cm2 at Gate Voltages below 75 V[J]. IEEE Electron Device Letters, 2016, 37(1): 96-99.
[60] Guerrera S A, Akinwande A I.Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates[J]. Nanotechnology, 2016, 27(29): 295302.
[61] Nagao M, Nicolaescu D, Matsukawa T, et al.Emission uniformity improvement of Si field emitter arrays by surface modification[J]. Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003, 21(4): 1581.
[62] Lee J-L, Oh S P, Youn Han S, et al.The effect of Pd coating on electron emission from silicon field emitter arrays[J]. J. Appl. Phys., 2000, 87(10): 7349-7353.
[63] Bonard J M, Maier F, Stöckli T, et al.Field emission properties of multiwalled carbon nanotubes[J]. Ultramicroscopy, 1998, 73(1-4): 7-15.
[64] Jean-Marc B, Dean K A, Coll B F, et al.Field emission of individual carbon nanotubes in the scanning electron microscope[J]. Phys. Rev. Lett., 2002, 89(19): 197602.
[65] Kim C D, Jang H S, Lee S Y, et al.In situ characterization of the field-emission behaviour of individual carbon nanotubes[J]. Nanotechnology, 2006, 17(20): 5180-5184.
[66] Chen Y, Shaw D T, Guo L.Field emission of different oriented carbon nanotubes[J]. Appl. Phys. Lett., 2000, 76(17): 2469-2471.
[67] Groning O, Kuttel O M, Emmenegger C, et al.Field emission properties of carbon nanotubes[J]. Journal of vacuum science & technology B, Microelectronics and nanometer structures: processing, measurement, and phenomena: an official journal of the American Vacuum Society, 2000, 18(2): 665-678.
[68] Wang M S, Peng L M, Wang J Y, et al.Electron field emission characteristics and field evaporation of a single carbon nanotube[J]. J. Phys. Chem. B, 2005, 109(1): 110-113.
[69] Lim S C, Lee D S, Choi H K, et al.Field emission of carbon-nanotube point electron source[J]. Diamond & Related Materials, 2009, 18(12): 1435-1439.
[70] Nilsson L, Groening O, Emmenegger C, et al.Scanning field emission from patterned carbon nanotube films[J]. Appl. Phys. Lett., 2000, 76(15): 2071-2073.
[71] Bonard J-M, Salvetat J-P, Stöckli T, et al.Field emission from single-wall carbon nanotube films[J]. Appl. Phys. Lett., 1998, 73(7): 918-920.
[72] Bonard J M, Croci M, Klinke C, et al.Carbon nanotube films as electron field emitters[J]. Carbon, 2002, 40(10): 1715-1728.
[73] Rao A M, Jacques D, Haddon R C, et al.In situ-grown carbon nanotube array with excellent field emission characteristics[J]. Appl. Phys. Lett., 2000, 76(25): 3813-3815.
[74] Li Z, Yang X, He F, et al.High current field emission from individual non-linear resistor ballasted carbon nanotube cluster array[J]. Carbon, 2015, 89: 1-7.
[75] Li Y, Sun Y, Yeow J T W. Fabrication and characterization of individually ballasted carbon nanotube field emitter arrays using doped silicon resistor; proceedings of the IEEE 17th International Conference on Nanotechnology, 2017[C]. New York: IEEE, 2015.
[76] Li C, Zhang Y, Cole M T, et al.Hot electron field emission via individually transistor-ballasted carbon nanotube arrays[J]. Acs Nano, 2012, 6(4): 3236-3242.
[77] Pirio G, Legagneux P, Pribat D, et al.Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode[J]. Nanotechnology, 2001, 13(1): 1-4.
[78] Meyyappan M, Delzeit L, Cassell A, et al.Carbon nanotube growth by PECVD: a review[J]. Plasma Sources Science & Technology, 2003, 12(2): 205-216.
[79] Han I T, Kim B K, Kim H J, et al.Effect of Al and catalyst thicknesses on the growth of carbon nanotubes and application to gated field emitter arrays[J]. Chem. Phys. Lett., 2004, 400(1-3): 139-144.
[80] Hsu D S Y, Shaw J. Integrally gated carbon nanotube-on-post field emitter arrays[J]. Appl. Phys. Lett., 2002, 80(1): 118-120.
[81] Xu N S, Wu Z S, Deng S Z, et al.High-voltage triode flat-panel display using field-emission nanotube-based thin films[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2001, 19(4): 1370-1372.
[82] Hsu D S Y. Microgating carbon nanotube field emitters by in situ growth inside open aperture arrays[J]. Appl. Phys. Lett., 2002, 80(16): 2988-2990.
[83] Lee Y H, Jang Y T, Kim D H, et al.Realization of gated field emitters for electrophotonic applications using carbon nanotube line emitters directly grown into submicrometer holes[J]. Adv. Mater., 2001, 13(7): 479-482.
[84] Sun Y, Yeow J T, Jaffray D A.Design and fabrication of carbon nanotube field-emission cathode with coaxial gate and ballast resistor[J]. Small, 2013, 9(20): 3385-3389.
[85] Shao W, Ding M Q, Chen C, et al.Micro-gated-field emission arrays with single carbon nanotubes grown on Mo tips[J]. Appl. Surf. Sci., 2007, 253(18): 7559-7562.
[86] Hartwell M, Fonstad C G.Strong electron emission from patterned tin-indium oxide thin films; proceedings of the 1975 International Electron Devices Meeting, 1975[C]. New York: IEEE, 1975.
[87] Lo H Y, Li Y, Chao H Y, et al.Field-emission properties of novel palladium nanogaps for surface conduction electron-emitters[J]. Nanotechnology, 2007, 18(47): 475708.
[88] Li Y, Lo H Y.Surface conduction electron emission in palladium hydrogenation nanogaps[J]. Journal of Physics D Applied Physics, 2008, 41(8): 085301.
[89] Yamamoto K, Nomura I, Yamazaki K, et al.Fabrication and Characterization of Surface Conduction Electron Emitters[J]. Sid Symposium Digest of Technical Papers, 2005, 36(1): 1933-1935.
[90] Yamamoto K, Nomura I, Yamazaki K, et al.Fabrication and characterization of surface-conduction electron emitters for SED application[J]. Journal of the Society for Information Display, 2006, 14(1): 73-79.
[91] Yamamoto K, Takagi S, Moriguchi T, et al.Characterization of carbon nano-gap for surface conduction electron emitters[J]. Japanese Journal of Applied Physics, 2009, 48(12): 122201.
[92] Oguchi T, Yamaguchi E, Sasaki K, et al.Invited Paper: A 36-inch Surface-conduction Electron-emitter Display(SED)[J]. Sid Symposium Digest of Technical Papers, 2012, 36(1): 1929-1931.
[93] Williams B F, Simon R E.Electron emission from a “cold-cathode” GaAs p‐n junction[J]. Appl. Phys. Lett., 1969, 14(7): 214-216.
[94] Schade H, Nelson H, Kressel H.Novel GaAs(AlGa)As Cold-Cathode Structure and Factors Affecting Extended Operation[J]. Appl. Phys. Lett., 1972, 20(10): 385-387.
[95] Guo X, Wang X, Chang B, et al. High quantum efficiency of depth grade doping negative-electron-affinity GaN photocathode [J]. Appl. Phys. Lett., 2010, 97(6): 063104-063104-3.
[96] Xia S, Liu L, Diao Y, et al.Research on quantum efficiency and photoemission characteristics of exponential-doping GaN nanowire photocathode[J]. Journal of Materials Science, 2017, 52(9): 12795-12805.
[97] Takeuchi D, Koizumi S.Novel aspects of diamond: from growth to applications[M]. Berlin: Springer, 2015: 237-272.
[98] Zou J, Chang B, Yang Z, et al.Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes[J]. Journal of Applied Physics, 2009, 105(1): 013714.
[99] Kohn E S.The Silicon Cold Cathode[J]. IEEE Transactions on Electron Devices, 1973, 20(3): 321-329.
[100] Williams R, Wronski C R.Electron emission from the schottly barriar structure ZnS: Pt: Cs[J]. Appl. Phys. Lett., 1968, 13(7): 231-233.
[101] Swank R K.Characteristics of a ZnS: Pd: Cs2O Cold Cathode[J]. J. Appl. Phys., 1970, 41(2): 778-781.
[102] Geppert D V.A proposed p-n junction cathode[J]. Proceedings of the IEEE, 1966, 54(1): 61-61.
[103] Kohn E S.Cold-cathode electron emission from silicon[J]. Appl. Phys. Lett., 1971, 18(7): 272-273.
[104] Stupp E, Pelissier A, Kidder M, et al.GaP negative-electron-affinity cold cathodes: a demonstration and appraisal[J]. J Appl Phys, 1977, 48(11): 4741-4748.
[105] Sukegawa T, Kan H, Nakamura T, et al.GaP negative-electron-affinity cold cathodes[J]. J. Appl. Phys., 1979, 50(5): 3780-3782.
[106] Qiao J L, Chang B K, Qian Y S, et al.Progress in study of negative electron affinity GaN vacuum surface electron source[J]. Acta Physica Sinica, 2011, 60: 107901.
[107] Sowers A T, Christman J A, Bremser M D, et al.Thin films of aluminum nitride and aluminum gallium nitride for cold cathode applications[J]. Appl. Phys. Lett., 1997, 71(16): 2289-2291.
[108] Cui J B, Ristein J, Ley L.Electron Affinity of the Bare and Hydrogen Covered Single Crystal Diamond(111)Surface[J]. Phys. Rev. Lett., 1998, 81(2): 429-432.
[109] Ito T, Nishimura M, Hatta A.Highly efficient electron emission from diode-type plane emitters using chemical-vapor-deposited single-crystalline diamond[J]. Appl. Phys. Lett., 1998, 73(25): 3739-3741.
[110] Burton J A.Electron Emission from Avalanche Breakdown in Silicon[J]. Phys. Rev., 1957, 108(5): 1342-1343.
[111] Van Zutphen T.Development of a GaAs Avalanche Electron-Emitting Diode Cold-Electron Emitter[J]. IEEE Transactions on Electron Devices, 1989, 36(11): 2715-2719.
[112] Bellau R V, Widdowson A E.Some properties of reverse-biased silicon carbide p-n junction cold cathodes[J]. Journal of Physics D, 5(3): 656-666.
[113] van Gorkom G G P, Hoeberechts A M E. Electron emission from depletion layers of silicon p‐n junctions[J]. J. Appl. Phys., 1980, 51(7): 3780-3785.
[114] Hoeberechts A M E. Novel silicon avalanche diode as a direct modulated cathode with integrated planar electron-optics; proceedings of the International Electron Devices Meeting, 1990[C]. New York: IEEE, 2015.
[115] Ea J Y, Zhu D, Lu Y, et al.Silicon Avalanche Cathodes and their Characteristics[J]. IEEE Transactions on Electron Devices, 1991, 38(10): 2377-2382.
[116] Malik R J, Aucoin T R, Ross R L, et al.Planar-doped barriers in GaAs by molecular beam epitaxy[J]. Electronics Letters, 1980, 16(22): 836-838.
[117] Jiang W N, Mishra U K.1% efficiency Al0. 3Ga0. 7As planar-doped-barrier electron emitters[J]. Electronics Letters, 1993, 29(22): 1997-1999.
[118] Jiang W N, Holcombe D J, Hashemi M M, et al.InGaAs/GaAs planar doped barrier electron emitters[J]. IEEE Transactions on Electron Devices, 1992, 39(11): 2649-2649.
[119] Shen L, Smochkova I P, Green D S, et al.GaN planar-doped-barrier electron emitter with piezoelectric surface barrier lowering[J]. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003, 21(1): 540-543.
[120] Mead C A.Operation of Tunnel‐Emission Devices[J]. J. Appl. Phys., 1961, 32(4): 646-652.
[121] Kusunoki T, Suzuki M.Increasing emission current from MIM cathodes by using an Ir-Pt-Au multilayer top electrode[J]. IEEE Transactions on Electron Devices, 2000, 47(8): 1667-1672.
[122] Kusunoki T, Sagawa M, Suzuki M, et al. Transfer ratio enhancement of an MIM tunneling cathode through "self-thinning" process of the top electrode: proceedings of the Seventh International Display Workshops, 2000[C]. Tokyo, Japan & San Jose, CA, USA: Inst. Image Inf. & Telev. Eng. & Soc. Inf. Display(SID), 2000.
[123] Sakemura K, Negishi N, Yamada T, et al.Development of an advanced high efficiency electro-emission device[J]. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004, 22(3): 1367-1371.
[124] Mimura H, Neo Y, Shimawaki H, et al.Improvement of the emission current from a cesiated metal-oxide- semiconductor cathode[J]. Appl. Phys. Lett., 2006, 88(12): 123514.
[125] Kan H, Nakamura T, Katsuno H, et al.A highly stable long‐life GaP‐GaAlP heterojunction cold cathode[J]. Appl. Phys. Lett., 1979, 34(9): 545-548.
[126] Yokoo K.Emission characteristics of metal-oxide-semiconductor electron tunneling cathode[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1993, 11(2): 429-432.
[127] Yokoo K.Experiments of highly emissive metal-oxide-semiconductor electron tunneling cathode[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1996, 14(3): 2096-2099.
[128] Kusunoki T, Sagawa M, Suzuki M, et al.Large-screen displays using metal-insulator-metal cathode arrays[J]. Journal of the Society for Information Display, 2010, 18(12): 1127-1134.
[129] Mimura H, Neo Y, Shimawaki H, et al.Improvement of the emission current from a cesiated metal-oxide-semiconductor cathode[J]. Appl. Phys. Lett., 2006, 88(12): 123514.
[130] Kusunoki T, Suzuki M, Sagawa M, et al.Highly efficient and long life metal-insulator-metal cathodes[J]. Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, 2012, 30(4): 041202.
[131] Fuchs K.The conductivity of thin metallic films according to the electron theory of metals[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2008, 34(1): 100-108.
[132] Hassink G, Wanke R, Rastegar I, et al.Transparency of graphene for low-energy electrons measured in a vacuum-triode setup[J]. APL Materials, 2015, 3(7): 076106.
[133] Murakami K, Tanaka S, Miyashita A, et al.Graphene-oxide-semiconductor planar-type electron emission device[J]. Appl. Phys. Lett., 2016, 108(8): 083506.
[134] Kirley M P, Aloui T, Glass J T.Monolayer graphene-insulator-semiconductor emitter for large-area electron lithography[J]. Appl. Phys. Lett., 2017, 110(23): 233109.
[135] Murakami K, Miyaji J, Furuya R, et al.High-performance planar-type electron source based on a graphene-oxide-.
semiconductor structure[J]. Appl. Phys. Lett., 2019, 114(21): 213501.
[136] Alimardani N, King S W, French B L, et al.Investigation of the impact of insulator material on the performance of dissimilar electrode metal-insulator-metal diodes[J]. J. Appl. Phys., 2014, 116(2): 024508.
[137] Kusunoki T, Sagawa M, Suzuki M, et al.Emission current enhancement of MIM cathodes by optimizing the tunneling insulator thickness[J]. IEEE Transactions on Electron Devices, 2002, 49(6): 1059-1065.
[138] Suzuki M, Sagawa M, Kusunoki T, et al.Enhancing electron-emission efficiency of MIM tunneling cathodes by reducing insulator trap density[J]. IEEE Transactions on Electron Devices, 2012, 59(8): 2256-2262.
[139] Xue T, Liang Z-H, Zhang X-N, et al.A metal-insulator-metal electron emitter based on a porous Al2O3 film[J]. Appl. Phys. Lett., 2015, 106(16): 163506.
[140] Costa V D, Henry Y, Bardou F, et al.Experimental evidence and consequences of rare events in quantum tunneling[J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 13(2): 297-303.
[141] Troyan P E, Gaponenko V M, Ghyngazov S A, et al.Methods for increasing emission current density and improving emission uniformity of formed MIM emitter arrays: proceedings of the International Vacuum Microelectronics Conference, 1996[C]. New York: IEEE, 1996.
[142] Li Z, Wei X.A High-Efficiency Electron-Emitting Diode Based on Horizontal Tunneling Junction[J]. IEEE Electron Device Letters, 2019, 40(7): 1201-1204.
[143] Wu G, Li Z, Tang Z, et al.Silicon Oxide Electron-Emitting Nanodiodes[J]. Advanced Electronic Materials, 2018, 4(8): 1800136.
[144] Kim S, Shin S, Kim T, et al.Robust graphene wet transfer process through low molecular weight polymethylmethacrylate[J]. Carbon, 2016, 98: 352-357.
[145] Deokar G, Avila J, Razado-Colambo I, et al.Towards high quality CVD graphene growth and transfer[J]. Carbon, 2015, 89: 82-92.
[146] Yamamoto S.Fundamental physics of vacuum electron sources[J]. Rep. Prog. Phys., 2006, 69(1): 181-232.
[147] Wei X, Wang S, Chen Q, et al.Breakdown of Richardson's law in electron emission from individual self-Joule-heated carbon nanotubes[J]. Sci. Rep., 2014, 4: 5102.
[148] Wei X.Abnormal electron emission from individual self-.
joule-heated carbon nanotubes: proceedings of the Vacuum Electronics Conference, 2015[C]. New York: IEEE, 2015.
[149] Wu G, Wei X, Gao S, et al.Tunable graphene micro-emitters with fast temporal response and controllable electron emission[J]. Nat. Commun., 2016, 7: 11513.
[150] Wang Y, Wu G, Xiang L, et al.Single-walled carbon nanotube thermionic electron emitters with dense, efficient and reproducible electron emission[J]. Nanoscale, 2017, 9(45): 17814-17820.
[151] Wang Y, Fang L, Xiang L, et al.On-Chip Thermionic Electron Emitter Arrays Based on Horizontally Aligned Single-Walled Carbon Nanotubes[J]. IEEE Transactions on Electron Devices, 2019, 66(2): 1069-1074.
[152] Brodie I, Spindt C A.Vacuum Microelectronics[M]. San Diego: Academic press inc, 1992: 1-106.
[1] 何剑锋, 黄卫军, 董长昆. 新型同轴电极结构碳纳米管场发射电离计[J]. 真空, 2019, 56(6): 12-15.
[2] 杨威, 魏贤龙. 片上电子源的研究现状(一)*[J]. 真空, 2019, 56(6): 16-26.
[3] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .