欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2020, Vol. 57 ›› Issue (5): 24-27.doi: 10.13385/j.cnki.vacuum.2020.05.06

• 薄膜 • 上一篇    下一篇

衬底温度对脉冲激光沉积法制备的CuO薄膜性能的影响

向玉春   

  1. 咸阳职业技术学院,陕西 西安 712000
  • 收稿日期:2019-09-18 发布日期:2020-11-06
  • 作者简介:向玉春(1990-),女,陕西省渭南市人,硕士。

Effect of Substrate Temperature on the Properties of CuO Films Deposited by Pulse Laser Deposition

XIANG Yu-chun   

  1. Xianyang Vocational & Technical College, Xi’an 710600, China
  • Received:2019-09-18 Published:2020-11-06

摘要: 通过脉冲激光沉积的方法在玻璃衬底上制备CuO薄膜,并研究了衬底温度对薄膜结构,光学以及电学性能的影响。结果表明:在不同衬底温度下得到的薄膜均为CuO,并且在红外区域,薄膜的透过率均高于65%。温度升高到300℃,具有较高的结晶质量和红外光透过率,薄膜的电学性能也随之变好,出现最低电阻(2.33×102Ωcm),较高的载流子浓度5.28×10161/cm3。最重要的是在500℃时氧化铜实现了由p型向n型的转变。

关键词: 氧化铜, 脉冲激光沉积, 衬底温度, 导电类型, 电阻率

Abstract: The CuO thin films were deposited on glass substrates by puls laser deposition and the effects of substrate temperature on the structural, electrical, and optical properties of CuO thin films were investigated. Thin films deposited at different substrate temperature under 8 Pa were all CuO. All CuO thin films exhibited a transmittance higher than 65% in the NIR range. Increasing the substrate temperature to amoderate level(300 in this study)accompanied improved crystalline quality, which yielded the lowest electrical resistivity of 2.33×102Ωcm with the highest carrier concentration of 5.28×10161/cm3 and Hall mobility of 1.26cm2/(VS). The most important is that CuO achieved from p-type to n-type at above 500℃. The n-type characteristics need to be improved to make these films useful for applications like transparent p-n junction based devices.

Key words: CuO, pulse laser deposition, substrate temperature, conduction type, electrical resistivity

中图分类号: 

  • O484
[1] Muhibbullah M, Hakim M O, Choudhury M G M. Studies on Seebeck effect in spray deposited CuO thin film on glass substrate[J]. Thin Solid Films, 2003, 423: 103-107.
[2] Prabu R D, Valanarasu S, Ganesh V, et al.An effect of temperature on structural, optical, photoluminescence and electrical properties of copper oxide thin films deposited by nebulizer spray pyrolysis technique[J]. Materials Science in Semiconductor Processing, 2018(74): 129-135.
[3] Dubal D P, Gund G S, Holze R, et al.Surfactantassisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors[J]. Dalton Transactions, 2013, 42(18): 6459-6467.
[4] 杜永利, 郜小勇, 高旭斌, 等. 单斜氧化铜薄膜的磁控溅射制备及表征[J]. 真空科学与技术学报, 2018, 38(5): 375-379.
[5] 季振国. 半导体物理[M]. 杭州: 浙江大学出版社, 2005: 129-134.
[6] Kaur M, Mithe K P, Despande S K, et al.Growth and branching of CuO nanowires by thermal oxidation of copper[J]. Journal of Crystal Growth, 2006, 289: 670-675.
[7] Yu T, Sow C, Gantimahapatruni A, et al.Patterning and fusion of CuO nanorods with a focused laser beam[J]. Nanotechnology, 2005, 16: 1238-1244.
[8] Jiang X, Herricks T, Xia Y.CuO nanowires can be synthesized by heating copper substrates in air[J]. Nanoletter, 2002, 2: 1333-1338.
[9] Nancheva N, Docheva N, Mijsheva M.Defects in Cu and Cu-O films produced by reactive magnetron sputtering[J]. Materials Letters, 1999, 39: 81-85.
[10] Yoon K H, Choi W J, Kang D H.Photoelectrochemical properties of copper oxide thin films coated onan N-Si substrate[J]. Thin Solid Films, 2000, 372: 250-256.
[11] Nair M T S, Guerrero L, Arenas O L, et al. Chemically deposited copper oxide thin film: structural, optical and electrical characteristics[J]. Applied Surface Science, 1999, 150: 143-151.
[12] Maruyama T.Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate[J]. Solar Energy Materials and Solar Cells, 1998, 56: 85-92.
[13] Condorelli G G, Malandrino G, Fragala I L.Kinetic study of MOCVD fabrication of copper(Ⅰ)and copper(Ⅱ)oxide films[J]. Chemical Vapor Deposition, 1999, 5: 21-27.
[14] Chaudhary Y S, Agrawal A, Shrivasta R, et al.A study on the photoelectrochemical properties of copper oxide thin film[J]. International Journal of Hydrogen Energy, 2004, 29: 131-134.
[15] Zhao Y, Wang H, Wu C, et al.Structures, electrical and optical properties of nickel oxide films by radio frequency magnetron sputtering[J]. Vacuum, 2014, 103: 14-16.
[16] Ali M, Gobinner C R, Kekud A D.Role of oxygen flow rate on the structural and optical properties of copper oxide thin films grown by reactive magnetron sputtering[J]. Indian Journal of Physics, 2016, 90(2): 219-224.
[17] 林龙, 李斌斌, 鲁林峰, 等. 氧气流量对射频磁控溅射制备Cu2O薄膜性能的影响[J]. 人工晶体学报. 2010, 39(5): 1221-1226.
[18] Jayah N A, Yahaya H, Mahmood M R, High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature[J], Nanoscale Research Letters, 2015, 10(1): 1-10.
[1] 沈洪雪, 李刚, 姚婷婷, 金葆琪, 金克武, 王天齐. 氮化碳薄膜的光电特性研究*[J]. 真空, 2020, 57(3): 34-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .