欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2020, Vol. 57 ›› Issue (5): 32-37.doi: 10.13385/j.cnki.vacuum.2020.05.08

• 薄膜 • 上一篇    下一篇

齿科植入器械微动损伤及界面强化的研究进展*

孙飞1, 王磊1, 何云鹏1, 巴德纯1, 宋桂秋1, 蔺增1,2   

  1. 1.东北大学机械工程与自动化学院,辽宁 沈阳 110819;
    2.辽宁省植入器械与界面科学重点实验室,辽宁 沈阳 110819
  • 收稿日期:2019-10-18 发布日期:2020-11-06
  • 通讯作者: 蔺增,博士,教授。
  • 作者简介:孙飞(1992-),男,辽宁省锦州市人,博士研究生。
  • 基金资助:
    * 国家自然科学基金(51775096); 中国科学院- 威高研究发展计划([2017]006)

Research Progress of Fretting Damage and Interface Strengthening in Dental Implant System

SUN Fei1, Wang Lei1, He Yun-peng1, BA De-chun1, SONG Gui-qiu1, LIN Zeng1,2   

  1. 1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
    2. Key Lab of Implanted Devices and Interface Science, Liaoning province, Shenyang 110819, China
  • Received:2019-10-18 Published:2020-11-06

摘要: 种植体与骨界面发生微动疲劳、连接部件界面发生微动磨损等破坏现象是齿科植入器械的主要失效形式之一,因此减小微动、提高齿科植入器械的长期寿命成为这类器械发展的关键。本文重点阐述了种植体与骨组织界面微动疲劳损伤导致骨结合不牢固、种植体内部连接界面微动磨损导致连接松动、失效等问题的研究进展。表面改性技术在提高植入器械骨结合率、耐磨损、抗疲劳等方面发挥着关键性的作用,传统的涂层技术由于增加了界面、存在长期脱落的风险而逐渐退出了历史舞台。对目前相关领域的综述研究表明,齿科植入器械各部件的原位改性技术具有从表面到基底成分梯度渐变、长期结合力好等优点,是有效解决植入器械微动损伤的关键技术,逐渐成为了新的发展趋势。

关键词: 齿科植入器械, 微动损伤, 表面改性, 耐磨损, 抗疲劳

Abstract: It is one of the main failure modes for dental implant system that fretting fatigue occurs at the implant-bone interface and fretting wear occurs at the interface between the connection components. Therefore, reducing the micromotion and improving the longevity of implant system have become the key factors for successful application. This review article focuses on the research progress of the instable problems caused by fretting fatigue at the implant-bone interface and the connection failure due to fretting wear between the internal interfaces of implant system. Surface modification technology plays a key role in improving osseointegration rate, wear resistance, and fatigue resistance of implanted devices. However, all the traditional coating technology gradually withdrew from the historical stage due to the increased new interface and the risk of long-term shedding. Based on the review for current researches, it is believed that some modern techniques(such as low energy ion implantation methods)have many advantages, such as gradient composition change from top surface to body substrate, long-term stability, and so on, which are becoming the key technologies for fretting damage control and are becoming a new trend in biomedical device development.

Key words: dental implant, fretting damage, surface modification, wear resistance, fatigue resistance

中图分类号: 

  • TH117.1
[1] Berthier Y, Vincent L, Godet M.Fretting fatigue and fretting wear[J]. Tribology International, 1989, 22(4): 235-242.
[2] 周仲荣, Vincent L.微动磨损[M]. 北京: 科学出版社, 2002: 1-7.
[3] Waterhouse R B.Fretting fatigue[M]. London: Elsevier Applied Science, 1981.
[4] 郭薇, 李健, 黄淑梅, 等. 微动幅值对Ti-6Al-4V合金摩擦特性的影响[J]. 钛工业进展, 2016, 33(5): 16-20.
[5] 王成焘, 等. 人体生物摩擦学[M]. 北京: 科学出版社, 2008.
[6] 万超, 郝智秀, 温诗铸. 骨科植入物的微动摩擦学研究现状及进展[J]. 摩擦学学报, 2012, 32(1): 102-112.
[7] Le G L, Soueidan A, Layrolle P, et al.Surface treatments of titanium dental implants for rapid osseointegration.[J]. Dental Materials, 2007, 23(7): 844-854.
[8] Jemat A, Ghazali M J, Razali M, et al.Surface modifications and their effects on titanium dental implants[J]. Biomed Research International, 2015, 2015(6): 791725.
[9] Ma T, Ge X, Zhang Y, et al.Effect of titanium surface modifications of dental implants on rapid osseointegration[M]//Keiichi Sasaki, Osamu Suzuki, Nobuhiro Takahashi. Interface Oral Health Science 2016: Innovation Research on Biosis-Abiosis Intelligent Interface. NewYork: Springer, 2017: 247-256.
[10] 周仲荣. 关于微动磨损与微动疲劳的研究[J]. 中国机械工程, 2000, 11(10): 1146-1150.
[11] 于海洋, 蔡振兵, 朱旻昊, 等. 人股骨皮质骨轴面微动摩擦磨损特性研究[J]. 机械工程学报, 2005, 41(8): 448-452.
[12] 刘道新, 何家文. 微动疲劳影响因素及钛合金微动疲劳行为[J]. 航空学报, 2001, 22(5): 454-457.
[13] 沈明学, 彭金方, 郑健峰, 等. 微动疲劳研究进展[J]. 材料工程, 2010, 24(12): 86-91.
[14] 罗智斌, 丁学强, 李似聪. 低弹性模量纯钛种植体的生物力学测试—在体实验研究[J]. 中国口腔种植学杂志, 2004, 9(2): 51-53.
[15] 何明鉴. 机械构件的微动疲劳[M]. 北京: 国防工业出版社, 1994.
[16] Jiang W, Wang W D, Shi X H, et al.The effects of hydroxyapatite coatings on stress distribution near the dental implant-bone interface[J]. Applied Surface Science, 2008, 255(2): 273-275.
[17] Werner W, Daniel K, Matthias K.Micromotion of dental implants: basic mechanical considerations:[J]. J Med Eng. 2012, 2013(1): 265412.
[18] Gao S S, Zhang Y R, Zhu Z L, et al.Micromotions and combined damages at the dental implant/bone interface[J]. International Journal of Oral Science, 2012, 4(4): 182.
[19] 赵静辉, 周延民, 罗岚. 种植体螺纹形状对骨界面应力分布的影响[J]. 现代口腔医学杂志, 2007, 21(2): 162-165.
[20] 邢晓建, 刘宝林, 刘岚. 骨结合率对种植体-骨界面应力分布的影响[J]. 西安交通大学学报(医学版), 2002, 23(4): 395-397.
[21] 卢军, 潘可风, 徐晓琳, 等. 不同骨结合率对种植体骨界面应力分布的影响[J]. 口腔颌面外科杂志, 2005, 15(3): 234-237.
[22] Pazos L, Corengia P, Svoboda H.Effect of surface treatments on the fatigue life of titanium for biomedical applications[J]. Journal of the mechanical behavior of biomedical materials, 2010, 3(6): 416-424.
[23] Cook S D, Weinstein A M, Klawitter J J.The retention mechanics of LTI carbon, carbon-coated aluminum oxide, and uncoated aluminum oxide dental implants[J]. Journal of Biomedical Materials Research, 1983, 17(3): 873-883.
[24] 梅双, 董福生, 董玉英, 等. 种植体螺距对骨界面应力分布的影响[J]. 现代口腔医学杂志, 2016(2): 70-73.
[25] Ghadiri M, Shafaei N, Salekdeh S H, et al.Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2016, 38(2): 335-343.
[26] 王婷婷, 王丽娜, 范震. 钛种植体阳极氧化的研究[J]. 口腔颌面外科杂志, 2016, 26(4): 290-294.
[27] 王丹宁, 赵宝红. 钛种植体表面微弧氧化技术研究进展[J]. 中国实用口腔科杂志, 2010, 03(9): 570-573.
[28] Liu X, Chu P K, Ding C.Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Materials Science & Engineering R, 2004, 47(3): 49-121.
[29] 方蛟, 周延民, 赵静辉. 钛及钛合金表面离子注入改性的研究进展[J]. 实用口腔医学杂志, 2014(4): 560-563.
[30] 曹辉亮, 刘宣勇, 丁传贤. 医用钛合金表面改性的研究进展[J]. 中国材料进展, 2009, 28(9): 9-17.
[31] Yang C H, Wang Y T, Tsai W F, et al.Effect of oxygen plasma immersion ion implantation treatment on corrosion resistance and cell adhesion of titanium surface[J]. Clinical Oral Implants Research, 2011, 22(12): 1426.
[32] Lin Z, Zhao J K, Du G Y, et al.Surface energy and work of adhesion of titanium oxide related materials[J]. Rare Metal Materials and Engineering, 2012, 41: 350-354.
[33] Lin Z, Lee I S.Controlling of wettability of TiOx films for the biological applications[J]. Surface and coatings technology, 2010, 205: S391.
[34] Lin Z, Liu K, Zhang Y C, et al.The microstructure and wettability of the TiOx films synthesized by reactive DC magnetron sputtering[J]. Materials Science and Engineering B, 2009, 156: 79.
[35] Lin Z, Lee I S, Choi Y J, et al.Characterizations of the TiO2-x films synthesized by e-beam evaporation for endovascular applications[J]. Biomedical Materials, 2009, 4: 011001
[36] 王少安, 巢永烈. 种植体-基桩(台)界面结构的研究[J]. 国际口腔医学杂志, 2001, 28(5): 283-285.
[37] 黎红, 黄楠, 周仲荣. 生物摩擦学及表面工程的研究现状和进展[J]. 中国表面工程, 2000, 13(1): 6-10.
[38] 苟敏, 蔡潇潇. 种植体-基台微间隙对种植体颈部周围骨的影响[J]. 国际口腔医学杂志, 2015, 42(6): 733-738.
[39] Rack T, Zabler S, Rack A, et al.An in vitro pilot study of abutment stability during loading in new and fatigue-loaded conical dental implants using synchrotron-based radiography[J]. International Journal of Oral & Maxillofacial Implants, 2013, 28(1): 44-50.
[40] Gracis S, Michalakis K, Vigolo P, et al.Internal vs. external connections for abutments/reconstructions: a systematic review[J]. Clinical Oral Implants Research, 2012, 23(s6): 20216.
[41] David G G, Steven A A, Clark M S, et al.Micromotion and dynamic fatigue properties of the dental implant-abutment interface[J]. Journal of Prosthetic Dentistry, 2001, 85(1): 47-52.
[42] Hoyer S A, Stanford C M, Buranadham S, et al.Dynamic fatigue properties of the dental implant-abutment interface: joint opening in wide-diameter versus standard-diameter hex-type implants[J]. Journal of Prosthetic Dentistry, 2001, 85(6): 599-607.
[43] Matthias K, Priv D.Parameters determing micromotion at the implant-abutment Interface[J]. The International Journal of Oral & Maxillofacial Implant, 2014, 29(6): 1338-1347.
[44] Karl M, Taylor T D.Effect of cyclic loading on micromotion at the implant-abutment interface[J]. The International Journal of Oral & Maxillofacial Implant, 2016, 31(6): 1292-1297.
[45] 贺燕, 杨德圣. 改变摩擦系数对固位螺丝稳定影响的实验研究[J]. 口腔颌面修复学杂志, 2007, 8(2): 136-137.
[46] 张哲, 蔺增, 庞骏德, 等. 种植体连接螺丝表面制备碳基薄膜的生物摩擦学研究[J]. 稀有金属材料与工程, 2014(s1): 85-89.
[47] 刘道新, 何家文. 经不同表面改性处理的钛合金的微动疲劳和微动磨损行为对比研究[J]. 摩擦学学报, 2005, 25(1): 13-17.
[48] Jung D U, Chung C H, Son M K, et al.Effects of TiN coating on the fatigue fracture of dental implant system with various cyclic loads[J]. 2015, 48(6): 283-291.
[49] Elias C N, Figueira D C, Rios P R.Influence of the coating material on the loosing of dental implant abutment screw joints[J]. Materials Science & Engineering C, 2006, 26(8): 1361-1366.
[50] 汤金钢, 刘道新, 唐长斌, 等. Ti6Al4V钛合金表面阴极辅助离子氮化及其摩擦学性能[J]. 中国科学: 技术科学, 2013, 43(8): 895-900.
[51] 贺瑞军, 孙枫, 王琳, 等. 钛合金离子渗氮表面完整性研究[J]. 金属热处理, 2017, 42(4): 77-81.
[1] 王迪, 林松盛, 刘灵云, 杨洪志, 蒋百灵, 薛玉娜, 周克崧. 表面处理技术对钛合金疲劳性能影响的研究进展*[J]. 真空, 2019, 56(6): 36-42.
[2] 冉 彪, 李刘合. 阳极层离子源的发展及应用[J]. 真空, 2018, 55(5): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .