欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (5): 26-31.doi: 10.13385/j.cnki.vacuum.2021.05.03

• 真空应用 • 上一篇    下一篇

分子层沉积纳米薄膜的现状和发展

陈谦, 杨丽珍, 刘忠伟, 张海宝, 陈强   

  1. 北京印刷学院等离子体物理及材料研究室,北京 102600
  • 收稿日期:2020-11-05 出版日期:2021-09-25 发布日期:2021-09-23
  • 通讯作者: 陈强,教授。
  • 作者简介:陈谦(1993-),男,山西省运城市人,硕士生。

Present Situation and Development of Nano Films Deposited by Molecular Layer Deposition

CHEN QIAN, YANG Li-zhen, LIU Zhong-Wei, ZHANG Hai-bao, CHEN Qiang   

  1. Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600, China
  • Received:2020-11-05 Online:2021-09-25 Published:2021-09-23

摘要: 随着微电子技术、锂离子电池和太阳能电池等行业的发展,人们对聚合物薄膜,尤其是纳米级聚合物薄膜的要求也越来越高。在传统的沉积方法不能满足要求的条件下,找到新的沉积聚合物的方法势在必行。分子层沉积(MLD)是一种类似于原子层沉积的技术,它可以精确控制聚合物膜的厚度、组成、形貌和保形性。因此,MLD可以成为制备聚合物薄膜的一种新方法。本文综述了分子层沉积的原理和方法,以及在薄膜领域的发展和应用,最后给出了分子层沉积技术未来发展所面对的挑战和展望。

关键词: 分子层沉积技术, 原理, 薄膜, 应用

Abstract: With the development of microelectronic technology, lithium-ion batteries and solar cells, especially the need of nano polymer films, are becoming higher and higher. Since the traditional deposition method can not meet the requirements, it is imperative to find a new method to deposit polymer. Molecular layer deposition(MLD) is a technique similar to atomic layer deposition, which can precisely control the thickness, composition, morphology and shape retention of polymer films. Therefore, MLD can be a new method to prepare polymer films. In this paper, the principle and method of MLD, as well as the development and application in the field of thin film preparation are reviewed. Finally, the challenges and prospects of MLD in the future are forecasted.

Key words: molecular layer deposition, principle, thin film, application

中图分类号: 

  • TQ31
[1] YOSHIMURA T, TATSUURA S, SOTOYAMA W.Polymer films formed with monolayer growth steps by molecular layer deposition[J]. Appl.Phys.Lett, 1991, 59(4): 482-484.
[2] YOSHIMURA T, TATSUURA S, SOTOYAMA W, et al.Quantum wire and dot formation by chemical vapor deposition and molecular layer deposition of one-dimensional conjugated polymer[J]. Appl.Phys.Lett, 1992, 60(3): 268-270.
[3] OLDHAM C J, GONG B, SPAGNOLA J C, et al.Encapsulation and chemical resistance of electrospun nylon nanofibers coated using integrated atomic and molecular layer deposition[J]. J.Electrochem.Soc, 2011, 158(9): D549-D556.
[4] YOSHIMURA T, OSHIMA A, KIM D.Il, et al. Quantum dot formation in polymer wires by three-molecule molecular layer deposition(MLD) and applications to electro-optic/ photovoltaic devices[J]. In ECS Transactions; ECS, 2009, 25(4): 15-25.
[5] GRILLO F, BUI H V, MOULIJN J A, et al.Understanding and controlling the aggregative growth of platinum nanoparticles in atomic layer deposition: an avenue to size selection[J]. J.Phys.Chem.Lett, 2017, 8: 975-983.
[6] KALOYEROS A E, GOFF J, ARKLES B.Emerging molecular and atomic level techniques for nanoscale applications[J]. ECS Interface, 2018, 27(4): 61-65.
[7] DAMERON A A, SEGHETE D, BURTON B B, et al.Molecular layer deposition of alucone polymer films using trimethylaluminum and ethylene glycol[J]. Chem.Mater, 2008, 20(10): 3315-3326.
[8] ZHOU H, BENT S F.Fabrication of organic interfaciallayers by molecular layer deposition: present status and future opportunities[J]. J. Vac. Sci. Technol., A, 2013, 31(4):040801.
[9] PUTKONEN M, HARJUOJA J, SAJAVAARA T, et al.Atomic layer deposition of polyimide thin films[J]. J.Mater.Chem, 2007, 17(7): 664-669.
[10] DU Y, GEORGE S M.Molecular layer deposition of nylon 66 films examined using in situ FTIR spectroscopy[J]. J.Phys.Chem.C, 2007, 111(24): 8509-8517.
[11] PENG Q, EFIMENKO K, GENZER J, et al.Oligomer orientation in vapor-molecular-layer-deposited alkyl-aromatic polyamide films[J]. Langmuir, 2012, 28(28): 10464-10470.
[12] IVANOVA T V, MAYDANNIK P S, CAMERON D C. Molecular layer deposition of polyethylene terephthalate thin films[J]. J.Vac.Sci.Technol.A, 2012, 30(1): 01A121.
[13] LUSHINGTON A, LANGFORD C, LIU J, et al.Orientation and ordering of organic and hybrid inorganic-organic polyurea films using molecular layer deposition[J]. J.Phys.Chem.C, 2017, 121(21): 11757-11764.
[14] UDDIN S M N, NAGAO Y. Multilayer growth of porphyrin-based polyurea thin film using solution-based molecular layer deposition technique[J]. Langmuir, 2017, 33(44): 12777-12784
[15] CLOSSER R G, BERGSMAN D S, BENT S F.Molecular layer deposition of a highly stable silicon oxycarbide thin film using an organic chlorosilane and water[J]. ACS Appl.Mater.Interfaces, 2018, 10: 24266-24274.
[16] YOON B, LEE Y, DERK A, et al.Molecular layer deposition of conductive hybrid organic-inorganic thin films using diethylzinc and hydroquinone[J]. ECS Trans., 2011, 33(27): 191-195.
[17] CHOI D W, YOO M, LEE H M, et al.A study on the growth behavior and stability of molecular layer deposited alucone films using diethylene glycol and trimethyl aluminum precursors,and the enhancement of diffusion barrier properties by atomic layer deposited Al2O3 capping[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12263-12271.
[18] SUN F B, DUAN Y, YANG Y Q.Fabrication of tunable[Al2O3: Alucone]thin-film encapsulations for top-emitting organic light-emitting diodes with high performance optical and barrier properties[J]. Organic Electronics, 2014, 15(10): 2546-2552.
[19] PARK Y S, CHOI S E, KIM H, et al, Fine-tunable absorption of uniformly aligned polyurea thin films for optical filters using sequentially self-limited molecular layer deposition[J]. ACS applied materials & interfaces, 2016, 8(18): 11788-11795.
[20] TYNELL T, YAMAUCHI H, KARPPINEN, M. Hybrid inorganic-organic superlattice structures with atomic layer deposition/molecular layer deposition[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces,Films, 2014, 32(1): 01A105.
[21] GIRI A, NIEMELÄ J P, SZWEJKOWSKI C J, et al.Reduction in thermal conductivity and tunable heat capacity of inorganic/organic hybrid superlattices[J]. Physical Review B, 2016, 93(2): 024201.
[22] GIEDRAITYTE Z, JOHANSSON L S, KARPPINEN M.ALD/MLD fabrication of luminescent Eu-organic hybrid thin films using different aromatic carboxylic acid components with N and O donors[J]. RSC Advances, 2016, 6(105): 103412-103417.
[23] GIEDRAITYTE Z, SAINIO J, HAGEN D, et al.Luminescent metal-nucleobase network thin films by atomic/molecular layer deposition[J]. The Journal of Physical Chemistry C, 2017, 121(32): 17538-17545.
[24] ABDULAGATOV A I, TERAUDS K, TRAVIS J J, et al.Pyrolysis of titanicone molecular layer deposition films as precursors for conducting TiO2/carbon composite films[J]. The Journal of Physical Chemistry C, 2013, 117(34): 17442-17450.
[25] LIU J, YOON B, KUHLMANN E, et al.Ultralow thermal conductivity of atomic/molecular layer-deposited hybrid organic-inorganic zincone thin films[J]. Nano Letters, 2013, 13(11): 5594-5599.
[26] YANG F, BREDE J, ABLAT H, et al.Reversible and irreversible reactions of trimethylaluminum with common organic functional groups as a model for molecular layer deposition and vapor phase infiltration[J]. Advanced Materials Interfaces, 2017, 4(18): 1700237-1700247.
[27] GRIMME S.Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799.
[28] SHENG J, PARK E J, SHONG B, et al.Atomic layer deposition of an indium gallium oxide thin film for thin-film transistor applications[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23934-23940.
[29] CHOUDHURY D, RAJARAMAN G, SARKAR S K.Stability of molecular layer deposited zincone films:experimental and theoretical exploration[J]. RSC Advances, 2015, 5(38): 29947-29952.
[30] 王潇. 基于原子层与分子层沉积相结合的混合薄膜封装技术[D]. 长春: 吉林大学, 2016.
[31] 王浩然. 基于低温原子层沉积的钙钛矿太阳能电池薄膜封装[D]. 长春: 吉林大学, 2020
[32] QIN L J, YAN N, HAO H X, et al.Surface engineering of zirconium particles by molecular layer deposition:significantly enhanced electrostatic safety at minimum loss of the energy density[J]. Applied Surface Science, 2018, 436: 548-555.
[33] 秦利军, 龚婷, 闫宁, 等. 原子层沉积技术在含能材料表面修饰中的应用研究进展[J]. 火炸药学报, 2019, 42(5): 425-131.
[34] MENG X.An overview of molecular layer deposition for organic and organic-inorganic hybrid materials: mechanisms, growth characteristics: and promising applications[J]. J.Mater.Chem.A, 2017, 5(35): 18326-18378.
[35] SUN Y, ZHAO Y, WANG J, et al.A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition[J]. Adv.Mater, 2019, 31(4): 1806541.
[36] LI X, LUSHINGTON A, SUN Q, et al.Safe and durable high temperature lithium-sulfur batteries via molecular layer deposited coating[J]. Nano Lett, 2016, 16(6): 3545-3549.
[37] ZHOU H, TONEY M, BENT F, et al.Cross-linked ultrathin polyurea films via molecular layer deposition[J]. 2013, 46(14): 5638-5643.
[38] XIONG S, SHENG T, KONG L, et al.Enhanced performances of polypropylene membranes by molecular layer deposition of polyimide[J]. Chin.J.Chem.Eng, 2016, 24(7): 843-849.
[39] SHENG T, CHEN H, XIONG S, et al.Atomic layer deposition of polyimide on microporous polyethersulfone membranes for enhanced and tunable performances[J]. AICHE J, 2014, 60(10): 3614-3622.
[40] TORNQVIST R, KORPELA S.On the aging of ZnS: Mn electroluminescent thin films grown by the atomic layer epitaxy technique[J]. Journal of Crystal Growth. 1982, 59(1-2): 395-398.
[1] 魏梦瑶, 王辉, 韩文芳, 王红莉, 苏一凡, 唐春梅, 代明江, 石倩. 中频磁控溅射制备氧化钨薄膜及电致变色性能研究*[J]. 真空, 2021, 58(5): 50-56.
[2] 张晓霞, 邓金祥, 孔乐, 李瑞东, 杨子淑, 张杰. 不同浓度的Si掺杂β-Ga2O3薄膜的制备及研究[J]. 真空, 2021, 58(5): 57-61.
[3] 张健, 牛夏斌, 李建浩, 齐振华. 射频磁控溅射对PET基材制备铝薄膜的性能影响[J]. 真空, 2021, 58(4): 21-24.
[4] 任少鹏, 高鹏, 王瑞生, 金秀, 王忠连, 张轶. 《荧光检测分析用干涉滤光片》标准解析[J]. 真空, 2021, 58(4): 25-29.
[5] 姜开银, 杨丽珍, 刘忠伟, 张海宝, 陈强. 螺旋波等离子体源中离子能量及其诊断*[J]. 真空, 2021, 58(4): 67-76.
[6] 纪建超, 颜悦, 哈恩华. 溶胶-凝胶法制备AZO薄膜的研究进展*[J]. 真空, 2021, 58(4): 30-35.
[7] 谭彪, 黄涛, 王鹏程, 刘佳明, 关玉慧, 刘顺明, 孙晓阳, 董海义. 中国散裂中子源RCS真空系统*[J]. 真空, 2021, 58(3): 1-6.
[8] 杨子淑, 段苹, 邓金祥, 张晓霞, 张杰, 杨倩倩. 不同浓度的Mg掺杂β-Ga2O3薄膜的制备与研究*[J]. 真空, 2021, 58(3): 30-34.
[9] 周美丽, 施昌勇, 陈强. 微波表面波对管内壁沉积DLC薄膜的均匀性的研究[J]. 真空, 2021, 58(3): 39-44.
[10] 张心会, 李青霄. 真空热处理对AZO膜结构及光电性能的影响*[J]. 真空, 2021, 58(3): 45-50.
[11] 高鹏, 班超, 任少鹏, 金秀, 王忠连, 杨文华. 一种基于遗传算法的光学薄膜优化设计方法*[J]. 真空, 2021, 58(2): 27-30.
[12] 田立成, 王尚民, 高俊, 孟伟, 田恺, 吴辰宸. 微电推进系统研制及应用现状*[J]. 真空, 2021, 58(2): 66-75.
[13] 李坤, 熊玉卿, 王虎, 张凯锋, 王兰喜, 周晖. 蒸发速率对ZnS薄膜性能的影响*[J]. 真空, 2021, 58(2): 15-19.
[14] 王逊. 真空测量技术及航天应用[J]. 真空, 2021, 58(1): 15-18.
[15] 张玉琛, 张海宝, 陈强. 高功率脉冲磁控溅射制备ZnO薄膜的研究进展*[J]. 真空, 2021, 58(1): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!