欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (5): 57-61.doi: 10.13385/j.cnki.vacuum.2021.05.09

• 薄膜 • 上一篇    下一篇

不同浓度的Si掺杂β-Ga2O3薄膜的制备及研究*

张晓霞, 邓金祥, 孔乐, 李瑞东, 杨子淑, 张杰   

  1. 北京工业大学理学部,北京 100124
  • 收稿日期:2020-06-03 出版日期:2021-09-25 发布日期:2021-09-23
  • 通讯作者: 邓金祥,教授。
  • 作者简介:张晓霞(1994-),女,山西大同人,硕士。
  • 基金资助:
    *北京市自然科学基金(No. 4192016)资助

Preparation and Study of Si-doped β-Ga2O3 Thin Films with Different Content

ZHANG Xiao-xia, DENG Jin-xiang, KONG Le, LI Rui-dong, YANG Zi-shu, ZHANG Jie   

  1. Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • Received:2020-06-03 Online:2021-09-25 Published:2021-09-23

摘要: 本文采用射频磁控溅射法在Si(100)和石英衬底制备纯β-Ga2O3和不同浓度的Si掺杂β-Ga2O3薄膜,并且研究Si掺杂对β-Ga2O3薄膜结构、表面形貌和光学性质的影响。X射线衍射(XRD)测试结果表明,Si掺杂β-Ga2O3薄膜都未出现新的衍射峰,随着Si浓度的增加,β-Ga2O3的特征峰(111)逐渐向大角度方向移动。X射线光电子能谱(XPS)表明β-Ga2O3薄膜中成功掺入了Si元素。本文使用原子力显微镜(AFM)表征薄膜的表面形貌,结果表明薄膜表面的粗糙度随着Si浓度增加呈现单调递增的趋势。紫外-可见光(UV-visible)透射光谱表明薄膜均在可见光波段具有高透光率,薄膜的光学带隙随Si掺杂浓度的变大而变大。Si掺杂实现了β-Ga2O3的带隙可调,表明Si是一种有潜力的掺杂剂。

关键词: 射频磁控溅射, Si掺杂β-Ga2O3薄膜, 带隙宽度, 结构

Abstract: In this work, pure β-Ga2O3 and Si-doped β-Ga2O3 thin films with different content were grown on Si(100)substrate and quartz substrate by radio frequency magnetron sputtering to study the influence of Si doping on the structure, surface morphology and optical properties of β-Ga2O3. The X-ray diffraction results showed that no new diffraction peaks were observed in all Si-doped β-Ga2O3 films,and the(111)diffraction peak gradually moved towards a larger angle with the increase of Si concentration. The X-ray photoelectron spectroscopy results indicated that Si was successfully doped in β-Ga2O3 films. The atomic force microscopy was used to study the surface morphology of films,and the results suggestedthat the roughness of films increased monotonously with the increase of Si content. The UV-visible light transmission spectrum tests showed that all films had the advantage of high transparency in visible region,while the optical band gap got larger with Si content increased. The band gap of β-Ga2O3 film can be adjusted after Si doping,which indicates Si is a potential dopant.

Key words: radio frequency magnetron sputtering, Si-doped β-Ga2O3 thin film, band gap, structure

中图分类号: 

  • O469
[1] PEARTON S J, YANG J, CARY P H, et al.A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301.
[2] HIGASHIWAKI M, JESSEN G H. Guest editorial: The dawn of gallium oxide microelectronics[J]. Applied Physics Letters, 2018, 112(6): 060401.1-060401.4.
[3] HE H Y, ORLANDO R, BLANCO M A, et al.First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases[J]. Physical Review B, 2006. 74, 195123.
[4] HUANG H C, KIM M, ZHAN X, et al.High aspect ratio β-Ga2O3 fin arrays with low interface charge density by inverse metal-assisted chemical etching[J]. ACS Nano, 2019, 13(8): 8784-8792.
[5] ZHANG H, DENG J, PAN Z, et al.Structural and optical properties of Nb-doped β-Ga2O3 thin films deposited by RF magnetron sputtering[J]. Vacuum, 2017, 146: 93-96.
[6] GIRIJA K, THIRUMALAIRAJAN S, VALMOR R.Mastelaro, et al. Photocatalytic degradation of organic pollutants by shape selective synthesis of β-Ga2O3 microspheres constituted by nanospheres for environmental remediation[J]. Journal of Materials Chemistry A, 2015, 3(6): 2617-2627.
[7] CHENG Y, YANG K, PENG Y, et al.Research on the structural and optical stability of Ga2O3 films deposited by electron beam evaporation[J]. Journal of Materials Science, 2013, 24(12): 5122-5126.
[8] LEE S A, HWANG J Y, KIM J P, et al. Dielectric characterization of transparent epitaxial Ga2O3 thin film on n-GaN/Al2O3 prepared by pulsed laser deposition[J]. Applied Physics Letters, 2006, 89(18): 182906-182906-3.
[9] PASSLACK M, HUNT N E J, SCHUBERT E F, et al. Dielectric properties of electron-beam deposited Ga2O3 films[J]. Applied Physics Letters, 1994, 64(20): 2715.
[10] 胡帆, 晁明举, 梁二军, 等. Mn掺杂Ga2O3薄膜的结构及光吸收性能研究[J]. 材料导报, 2009, 23(16):16-18, 21.
[11] DU X, LI Z, LUAN C, et al.Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD[J]. Journal of Materials Science, 2015, 50(8):3252-3257.
[12] VÍLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al. Electrical conductivity and carrier concentration control in beta-Ga2O3 by Si doping[J]. Applied Physics Letters, 2008, 92(20): A316.
[13] HU D Q, WANG Y, ZHUANG S W, et al.Surface morphology evolution and optoelectronic properties of heteroepitaxial Si-doped β-Ga2O3 thin films grown by metal-organic chemical vapor deposition[J]. Ceramics International, 2017, 44(3): 3122-3127.
[14] TAKAKURA K, KOGA D, OHYAMA H, et al.Evaluation of the crystalline quality of β-Ga2O3 films by optical absorption measurements[J]. Physica B Condensed Matter, 2009, 404(23-24): 4854-4857.
[15] NIE Y, JIAO S, MENG F, et al.Growth and properties analysis of AlxGa2-xO3 thin film by radio frequency magnetron sputtering using Al/Ga2O3 target[J]. Journal of Alloys and Compounds, 2019, 798: 568-575.
[16] LI W H, PENG Y K, WANG C, et al.Structural, optical and photoluminescence properties of Pr-doped β-Ga2O3 thin films[J]. Journal of Alloys & Compounds, 2017, 697: 388-391.
[17] ZHANG H, DENG J X, HE Y F, et al.Effects of annealing and Nb doping on the electrical properties of p-Si/n-β-Ga2O3: Nb heterojunction[J]. Journal of Materials Science Materials in Electronics, 2018, 29: 19028-19033.
[18] 张易军, 闫金良, 赵刚, 等. Si掺杂β-Ga2O3的第一性原理计算与实验研究[J]. 物理学报, 2011(3):560-566.
[19] WEI M, JIN M, ZHAO L, et al.Characterization of Sn-Doped β-Ga2O3 films deposited on MgO(100) substrate by MOCVD[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(10):7889-7894.
[20] PASSLACK M, SCHUBERT E F, HOBSON W S, et al.Ga2O3 films for electronic and optoelectronic applications[J]. Journal of Applied Physics, 1995, 77(2): 686.
[21] RAO R, RAO A M, XU B, et al. Blue shifted Raman scattering and its correlation with the[110] growth direction in gallium oxide nanowires[J]. Journal of Applied Physics, 2005, 98(9): 094312.1-094312.5.
[22] GUO D, WU Z, LI P, et al.Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology[J]. Optical Materials Express, 2014, 4(5):1067.
[23] AN Y H, CHU X L, HUANG Y Q, et al.Au plasmon enhanced high performance β-Ga2O3 solar-blind photo-detector[J]. Progress in Natural Science Materials International, 2016, 26(1): 65-68.
[24] TAKAKURA K, FUNASAKI S, TSUNODA I, et al.Investigation of the Si doping effect in β-Ga2O3 films by co-sputtering of gallium oxide and Si[J]. Physica B Physics of Condensed Matter, 2012, 407(15): 2900-2902.
[1] 齐大伟, 高俊旺, 吴斌, 王慧, 吕德润. 大口径真空插板阀优化设计[J]. 真空, 2021, 58(5): 46-49.
[2] 白明远, 王鑫, 甄真, 牟仁德, 何利民, 许振华. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究*[J]. 真空, 2021, 58(4): 12-20.
[3] 张健, 牛夏斌, 李建浩, 齐振华. 射频磁控溅射对PET基材制备铝薄膜的性能影响[J]. 真空, 2021, 58(4): 21-24.
[4] 齐大伟, 李伟华, 李传旭, 吴斌, 陈德江, 唐志共. 大型风洞用离心真空泵气动设计[J]. 真空, 2021, 58(4): 49-53.
[5] 姜开银, 杨丽珍, 刘忠伟, 张海宝, 陈强. 螺旋波等离子体源中离子能量及其诊断*[J]. 真空, 2021, 58(4): 67-76.
[6] 杨子淑, 段苹, 邓金祥, 张晓霞, 张杰, 杨倩倩. 不同浓度的Mg掺杂β-Ga2O3薄膜的制备与研究*[J]. 真空, 2021, 58(3): 30-34.
[7] 王颖, 邢旺, 明悦, 朱一鸣. 等静压机钢带缠绕式工作缸结构强度数值模拟[J]. 真空, 2021, 58(3): 82-85.
[8] 吴键坤, 李兆国, 彭丽萍, 易勇, 张继成. 氮分压对ZrN薄膜结构及颜色的影响[J]. 真空, 2021, 58(1): 57-62.
[9] 戴永喜, 杨倩倩, 邓金祥, 孔乐, 刘红梅, 杨凯华, 王吉有. 不同Si含量掺杂的ZTO薄膜的制备与研究[J]. 真空, 2020, 57(6): 23-26.
[10] 王颖, 明悦, 代玉博, 车恩林, 王标. 真空高温热处理炉石墨炉胆结构优化[J]. 真空, 2020, 57(6): 27-30.
[11] 韦贤露, 巩晨阳, 肖剑荣. 射频反应磁控溅射制备MoS2薄膜结构及光学性能*[J]. 真空, 2020, 57(5): 11-13.
[12] 张庆芳, 易勇, 罗江山. 溅射功率对铒薄膜微观结构的影响*[J]. 真空, 2020, 57(3): 17-20.
[13] 李论, 赵吉宾, 周波, 田同同. 基于角表数据结构的增材制造分层计算方法*[J]. 真空, 2020, 57(3): 84-88.
[14] 方波, 张林, 蔡飞, 张世宏. 冷作模具钢等离子渗镀CrVN复合涂层摩擦磨损性能研究*[J]. 真空, 2020, 57(2): 33-39.
[15] 王迪, 林松盛, 刘灵云, 杨洪志, 蒋百灵, 薛玉娜, 周克崧. 表面处理技术对钛合金疲劳性能影响的研究进展*[J]. 真空, 2019, 56(6): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .