欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (4): 67-76.doi: 10.13385/j.cnki.vacuum.2021.04.13

• 测量与控制 • 上一篇    下一篇

螺旋波等离子体源中离子能量及其诊断*

姜开银, 杨丽珍, 刘忠伟, 张海宝, 陈强   

  1. 北京印刷学院等离子体物理及材料研究室,北京 102600
  • 收稿日期:2020-12-21 出版日期:2021-07-25 发布日期:2021-08-05
  • 通讯作者: 陈强,教授。
  • 作者简介:姜开银(1995-),男,山东省临沂市人,硕士生。
  • 基金资助:
    *国家自然科学基金(批准号11875090、12075032、11775028); 北京市自然科学基金(批准号1192008,KZ202010015022)和北京印刷学院科研项目(Ea201901,Ee202001)

Ion Energy and its Diagnosis in Helicon Plasma Source

JIANG Kai-yin, YANG Li-zhen, LIU Zhong-wei, ZHANG Hai-bao, CHEN Qiang   

  1. Lab of Plasma Physics &Materials, Beijing Institute of Graphic Communication, Beijing 102600, China
  • Received:2020-12-21 Online:2021-07-25 Published:2021-08-05

摘要: 介绍了一种具有广泛应用前景的新型等离子体源—螺旋波等离子体源,其特点是结构简单,可以产生高密度的等离子体。论文首先简述了螺旋波等离子体产生基本原理,并对螺旋波等离子体源的结构、加热机制以及天线形式与其能量耦合方式进行了介绍。然后,概述了螺旋波等离子体源的特性和诊断方式,主要介绍迟滞能量分析仪(RFEA)对螺旋波等离子体中的离子能量分布(IED)诊断,并对影响IED的因素进行分析。随后介绍了螺旋波等离子体源在刻蚀、薄膜沉积以及电推进三个领域的应用进展。最后指出螺旋波等离子体源的未来发展以及存在的一些问题。

关键词: 螺旋波, 结构, 原理, 离子能量分布, 应用进展

Abstract: This article reviews a new type of plasma,helicon plasma, which is characterized by its simple structure and generation of high-density plasma. First, the basic principle of helicon plasma is described briefly, including the helicon plasma source structure, heating mechanism, antenna form and energy coupling mode. Then, the characteristics and diagnosis methods of the helicon plasma are introduced. Among them, the ion energy distribution(IED)by the retarding field energy analyzer(RFEA)is emphasized, and the factors affecting IED value are analyzed. Subsequently, the application progresses of the helicon plasma in the three fields of etching, thin film deposition and electric propulsion are mainly introduced. Finally, the future perspectives of helicon plasma source and some challenges are pointed out.

Key words: helicon wave, structure, principle, ion energy distribution, application progress

中图分类号: 

  • O536
[1] SHINOHARA S, KUWAHARA D, FURUKAWA T, et al.Development of featured high-density helicon sources and their application to electrodeless plasma thruster[J]. Plasma Physics and Controlled Fusion, 2018, 61(1): 014017.
[2] BOSWELL R W, CHEN F F.Helicons-the early years[J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1229-1244.
[3] LEGÉNDY C R. Macroscopic theory of helicons[J]. Physical Review, 1964, 135(6A): A1713.
[4] KLOZENBERG J P, MCNAMARA B, THONEMANN P C.The dispersion and attenuation of helicon waves in a uniform cylindrical plasma[J]. Journal of Fluid Mechanics, 1965, 21(3): 545-563.
[5] LEHANE J A, THONEMANN P C.An experimental study of helicon wave propagation in a gaseous plasma[J]. Proceedings of the Physical Society, 1965, 85(2): 301.
[6] BOSWELL R W.Very efficient plasma generation by whistler waves near the lower hybrid frequency[J]. Plasma Physics and Controlled Fusion, 1984, 26(10): 1147.
[7] ELLINGBOE A R, BOSWELL R W.Capacitive, inductive and helicon-wave modes of operation of a helicon plasma source[J]. Physics of Plasmas, 1996, 3(7): 2797-2804.
[8] PORTE L, YUN S M, ARNUSH D, et al.Superiority of half-wavelength helicon antennae[J]. Plasma Sources Science and Technology, 2003, 12(2): 287.
[9] CHEN F F.Helicon Plasma Sources, in“High Density Plasma Sources” ed[M]. Park Ridge: Oleg A. Popov, Noyes Publications, 1995.
[10] KINDER R L, KUSHNER M J.Wave propagation and power deposition in magnetically enhanced inductively coupled and helicon plasma sources[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2001, 19(1): 76-86.
[11] CHEN F F.Physics of helicon discharges[J]. Physics of Plasmas, 1996, 3(5): 1783-1793.
[12] CHEN F F.Helicon discharges and sources: a review[J]. Plasma Sources Science and Technology, 2015, 24(1): 014001.
[13] BOSWELL R W, PORTEOUS R K.Large volume, high density rf inductively coupled plasma[J]. Applied physics letters, 1987, 50(17): 1130-1132
[14] CHEN F F.Experiments on helicon plasma sources[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(4): 1389-1401.
[15] CARTER C, KHACHAN J.Downstream plasma characteristics from a single loop antenna in a helicon processing reactor[J]. Plasma Sources Science and Technology, 1999, 8(3): 432.
[16] WANG S J, KWAK J G, KIM C B, et al.Observation of enhanced negative hydrogen ion production in weakly magnetized RF plasma[J]. Physics Letters A, 2003, 313(4): 278-283.
[17] DEGELING A W, JUNG C O, BOSWELL R W, et al.Plasma production from helicon waves[J]. Physics of Plasmas, 1996, 3(7): 2788-2796.
[18] SHINOHARA S, SOEJIMA T.Trials of RF plasma production using different antenna geometries with magnetic field[J]. Plasma Physics and Controlled Fusion, 1998, 40(12): 2081.
[19] CHO S.The resistance peak of helicon plasmas at low magnetic fields[J]. Physics of Plasmas, 2006, 13(3): 033504.
[20] 赵高, 熊玉卿, 马超, 等. 短管螺旋波等离子体放电中等离子特性测量和模式转变的研究[J]. 物理学报, 2014, 63(23): 235202.
[21] LIEBERMAN M A, LICHTENBERG A J.Principles of plasma discharges and materials processing[M]. New York: John Wiley & Sons, 2005.
[22] DEGELING A, MIKHELSON N, BOSWELL R W, et al.Characterization of helicon waves in a magnetized inductive discharge[J]. Physics of Plasmas, 1998, 5(3): 572-579.
[23] SUZUKI K, NAKAMURA K, OHKUBO H, et al.Power transfer efficiency and mode jump in an inductive RF discharge[J]. Plasma Sources Science and Technology, 1998, 7(1): 13.
[24] CHEN F F, BOSWELL R W.Helicons-the past decade[J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1245-1257.
[25] SHAMRAI K P, TARANOV V B.Volume and surface rf power absorption in a helicon plasma source[J]. Plasma Sources Science and Technology, 1996, 5(3): 474.
[26] CHEN F F, BLACKWELL D D.Upper limit to Landau damping in helicon discharges[J]. Physical review letters, 1999, 82(13): 2677.
[27] LKGHT M, CHEN F F.Helicon wave excitation with helical antennas[J]. Physics of Plasmas, 1995, 2(4): 1084-1093.
[28] CHEN F F. Radiofrequency field enhancement near ion gyroresonance, TRW Report Task II-3552(1981) [EB/OL].[2020-10-10]. http://www.ee.ucla.edu/~ffchen/Archive/Chen
pdf.
[29] MILJAK D G, CHEN F F.Helicon wave excitation with rotating antenna fields[J]. Plasma Sources Science and Technology, 1998, 7(1): 61.
[30] MELAZZI D, LANCELLOTTI V.A comparative study of radiofrequency antennas for Helicon plasma sources[J]. Plasma Sources Science and Technology, 2015, 24(2): 025024.
[31] TYNAN G R, BAILEY III A D, CAMPBELL G A, et al. Characterization of an azimuthally symmetric helicon wave high density plasma source[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997, 15(6): 2885-2892.
[32] CHEN F F.Performance of a permanent-magnet helicon source at 27 and 13 MHz[J]. Physics of Plasmas, 2012, 19(9): 093509.
[33] BOSWELL R W, PORTEOUS R, PRYTZ A, et al.Some features of RF excited fully ionized low pressure argon plasma[J]. Physics Letters A, 1982, 91(4): 163-166.
[34] GAHAN D, DOLINAJ B, HAYDEN C, et al.Retarding field analyzer for ion energy distribution measurement through a radio-frequency or pulsed biased sheath[J]. Plasma Processes and Polymers, 2009, 6(S): 643-648.
[35] CHARLES C, BOSWELL R W, PORTEOUS R K.Measurement and modeling of ion energy distribution functions in a low pressure argon plasma diffusing from a 13.56MHz helicon source[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(2): 398-403.
[36] CHILD C D.Discharge from hot CaO[J]. Physical Review(Series I), 1911, 32(5): 492.
[37] LANGMUIR I.The effect of space charge and residual gases on thermionic currents in high vacuum[J]. Physical Review, 1913, 2(6): 450.
[38] BENOIT-CATTIN P, Bernard L C.Anomalies of the Energy of Positive Ions Extracted from High-Frequency Ion Sources. A Theoretical Study[J]. Journal of Applied Physics, 1968, 39(12): 5723-5726.
[39] METZE A, ERNIE D W, OSKAM H J.The energy distribution of ions bombarding electrode surfaces in rf plasma reactors[J]. Journal of Applied Physics, 1989, 65(3): 993-998.
[40] MILLER P A, RILEY M E.Dynamics of collisionless rf plasma sheaths[J]. Journal of Applied Physics, 1997, 82(8): 3689-3709.
[41] TSUI R T C. Calculation of ion bombarding energy and its distribution in rf sputtering[J]. Physical Review, 1968, 168(1): 107.
[42] CHARLES C, DEGELING A W, SHERIDAN T E, et al.Absolute measurements and modeling of radio frequency electric fields using a retarding field energy analyzer[J]. Physics of Plasmas, 2000, 7(12): 5232-5241.
[43] HERSHKOWITZ N, DING J, BREUN R A, et al.Does high density-low pressure etching depend on the type of plasma source?[J]. Physics of Plasmas, 1996, 3(5): 2197-2202.
[44] CHABERT P, PROUST N, PERRIN J, et al.High rate etching of 4H-SiC using a SF6/O2 helicon plasma[J]. Applied Physics Letters, 2000, 76(16): 2310-2312.
[45] TAKAHASHI K, MOTOMURA T, ANDO A, et al.Transport of a helicon plasma by a convergent magnetic field for high speed and compact plasma etching[J]. Journal of Physics D: Applied Physics, 2014, 47(42): 425201.
[46] YAMAYA K, YAMAKI Y, NAKANISHI H, et al.Use of a helicon-wave excited plasma for aluminum-doped ZnO thin-film sputtering[J]. Applied physics letters, 1998, 72(2): 235-237.
[47] JI P, CHEN J, HUANG T, et al.Fast preparation of vertical graphene nanosheets by helicon wave plasma chemical vapor deposition and its electrochemical performance[J]. Diamond and Related Materials, 2020: 107958.
[48] CHARLES C.A review of recent laboratory double layer experiments[J]. Plasma sources science and technology, 2007, 16(4): R1.
[49] CHARLES C, BOSWELL R W.Current-free double-layer formation in a high-density helicon discharge[J]. Applied Physics Letters, 2003, 82(9): 1356-1358.
[50] LIEBERMAN M A, CHARLES C, BOSWELL R W.A theory for formation of a low pressure,current-free double layer[J]. Journal of Physics D: Applied Physics, 2006, 39(15): 3294.
[51] 徐宗琦. 螺旋波等离子体推力器工作原理研究[D]. 大连: 大连理工大学, 2016.
[52] Ad Astra Rocket Company.[EB/OL].[2020.10.20].http://www.adastrarocket.com/aarc/history.
[53] SHABSHELOWITZ A, GALLIMORE A D, PETERSON P Y.Performance of a helicon Hall thruster operating with Xenon, Argon, and Nitrogen[J]. Journal of Propulsion and Power, 2014, 30(3): 664-671.
[54] WILLIAMS L T, WALKER M L R. Ion production cost of a gridded helicon ion thruster[J]. Plasma Sources Science and Technology, 2013, 22(5): 055019.
[55] 赵高, 王慧慧, 欧阳吉庭, 等. 利用简式探针与光谱法研究螺旋波等离子体的空间分布[C]. 全国等离子体科学技术会议, 2017.
[56] 黄建国, 赵华, 任琼英, 等. 螺旋波电推进火星超低轨道维持技术研究[C]//中国宇航学会深空探测技术专业委员会第九届学术年会论文集(上册), 2012.
[57] 夏广庆, 王冬雪, 薛伟华, 等. 螺旋波等离子体推进研究进展[J]. 推进技术, 2011, 32(6): 857-863.
[58] 杨雄. 螺旋波等离子体推力器理论与实验研究[D]. 长沙: 国防科学技术大学, 2012.
[59] 李波, 王一白, 张普卓, 等. VASIMR中螺旋波等离子体源设计[J]. 北京航空航天大学学报, 2012(6): 13-18.
[1] 白明远, 王鑫, 甄真, 牟仁德, 何利民, 许振华. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究*[J]. 真空, 2021, 58(4): 12-20.
[2] 齐大伟, 李伟华, 李传旭, 吴斌, 陈德江, 唐志共. 大型风洞用离心真空泵气动设计[J]. 真空, 2021, 58(4): 49-53.
[3] 王颖, 邢旺, 明悦, 朱一鸣. 等静压机钢带缠绕式工作缸结构强度数值模拟[J]. 真空, 2021, 58(3): 82-85.
[4] 吴键坤, 李兆国, 彭丽萍, 易勇, 张继成. 氮分压对ZrN薄膜结构及颜色的影响[J]. 真空, 2021, 58(1): 57-62.
[5] 王颖, 明悦, 代玉博, 车恩林, 王标. 真空高温热处理炉石墨炉胆结构优化[J]. 真空, 2020, 57(6): 27-30.
[6] 韦贤露, 巩晨阳, 肖剑荣. 射频反应磁控溅射制备MoS2薄膜结构及光学性能*[J]. 真空, 2020, 57(5): 11-13.
[7] 张庆芳, 易勇, 罗江山. 溅射功率对铒薄膜微观结构的影响*[J]. 真空, 2020, 57(3): 17-20.
[8] 李论, 赵吉宾, 周波, 田同同. 基于角表数据结构的增材制造分层计算方法*[J]. 真空, 2020, 57(3): 84-88.
[9] 方波, 张林, 蔡飞, 张世宏. 冷作模具钢等离子渗镀CrVN复合涂层摩擦磨损性能研究*[J]. 真空, 2020, 57(2): 33-39.
[10] 王迪, 林松盛, 刘灵云, 杨洪志, 蒋百灵, 薛玉娜, 周克崧. 表面处理技术对钛合金疲劳性能影响的研究进展*[J]. 真空, 2019, 56(6): 36-42.
[11] 刘朝, 邢洪硕, 苏家豪, 张钧深, 梁帅, 谢元华, 韩进. 真空电梯现状与发展趋势探讨*[J]. 真空, 2019, 56(6): 54-59.
[12] 伍醒, 蒋爱华, 程勇. 射频功率对DLC薄膜结构和力学性能的影响[J]. 真空, 2019, 56(4): 34-36.
[13] 李阳, 同朴超, 李军仁, 朱军利, 张卓卓, 曹轶轲. 真空等离子焊箱用焊枪的改进优化[J]. 真空, 2019, 56(4): 71-73.
[14] 刘兴胜, 解永蓉, 郑颖, 费渭南. 相对法校准真空漏孔及不确定度的评定[J]. 真空, 2019, 56(2): 66-68.
[15] 郭崇武, 孙立臣, 孙立志, 齐飞飞, 李文斌. 单 O 型圈密封结构中双层密封泄漏机理研究[J]. 真空, 2018, 55(6): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .