真空 ›› 2021, Vol. 58 ›› Issue (4): 67-76.doi: 10.13385/j.cnki.vacuum.2021.04.13
姜开银, 杨丽珍, 刘忠伟, 张海宝, 陈强
JIANG Kai-yin, YANG Li-zhen, LIU Zhong-wei, ZHANG Hai-bao, CHEN Qiang
摘要: 介绍了一种具有广泛应用前景的新型等离子体源—螺旋波等离子体源,其特点是结构简单,可以产生高密度的等离子体。论文首先简述了螺旋波等离子体产生基本原理,并对螺旋波等离子体源的结构、加热机制以及天线形式与其能量耦合方式进行了介绍。然后,概述了螺旋波等离子体源的特性和诊断方式,主要介绍迟滞能量分析仪(RFEA)对螺旋波等离子体中的离子能量分布(IED)诊断,并对影响IED的因素进行分析。随后介绍了螺旋波等离子体源在刻蚀、薄膜沉积以及电推进三个领域的应用进展。最后指出螺旋波等离子体源的未来发展以及存在的一些问题。
中图分类号:
[1] SHINOHARA S, KUWAHARA D, FURUKAWA T, et al.Development of featured high-density helicon sources and their application to electrodeless plasma thruster[J]. Plasma Physics and Controlled Fusion, 2018, 61(1): 014017. [2] BOSWELL R W, CHEN F F.Helicons-the early years[J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1229-1244. [3] LEGÉNDY C R. Macroscopic theory of helicons[J]. Physical Review, 1964, 135(6A): A1713. [4] KLOZENBERG J P, MCNAMARA B, THONEMANN P C.The dispersion and attenuation of helicon waves in a uniform cylindrical plasma[J]. Journal of Fluid Mechanics, 1965, 21(3): 545-563. [5] LEHANE J A, THONEMANN P C.An experimental study of helicon wave propagation in a gaseous plasma[J]. Proceedings of the Physical Society, 1965, 85(2): 301. [6] BOSWELL R W.Very efficient plasma generation by whistler waves near the lower hybrid frequency[J]. Plasma Physics and Controlled Fusion, 1984, 26(10): 1147. [7] ELLINGBOE A R, BOSWELL R W.Capacitive, inductive and helicon-wave modes of operation of a helicon plasma source[J]. Physics of Plasmas, 1996, 3(7): 2797-2804. [8] PORTE L, YUN S M, ARNUSH D, et al.Superiority of half-wavelength helicon antennae[J]. Plasma Sources Science and Technology, 2003, 12(2): 287. [9] CHEN F F.Helicon Plasma Sources, in“High Density Plasma Sources” ed[M]. Park Ridge: Oleg A. Popov, Noyes Publications, 1995. [10] KINDER R L, KUSHNER M J.Wave propagation and power deposition in magnetically enhanced inductively coupled and helicon plasma sources[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2001, 19(1): 76-86. [11] CHEN F F.Physics of helicon discharges[J]. Physics of Plasmas, 1996, 3(5): 1783-1793. [12] CHEN F F.Helicon discharges and sources: a review[J]. Plasma Sources Science and Technology, 2015, 24(1): 014001. [13] BOSWELL R W, PORTEOUS R K.Large volume, high density rf inductively coupled plasma[J]. Applied physics letters, 1987, 50(17): 1130-1132 [14] CHEN F F.Experiments on helicon plasma sources[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(4): 1389-1401. [15] CARTER C, KHACHAN J.Downstream plasma characteristics from a single loop antenna in a helicon processing reactor[J]. Plasma Sources Science and Technology, 1999, 8(3): 432. [16] WANG S J, KWAK J G, KIM C B, et al.Observation of enhanced negative hydrogen ion production in weakly magnetized RF plasma[J]. Physics Letters A, 2003, 313(4): 278-283. [17] DEGELING A W, JUNG C O, BOSWELL R W, et al.Plasma production from helicon waves[J]. Physics of Plasmas, 1996, 3(7): 2788-2796. [18] SHINOHARA S, SOEJIMA T.Trials of RF plasma production using different antenna geometries with magnetic field[J]. Plasma Physics and Controlled Fusion, 1998, 40(12): 2081. [19] CHO S.The resistance peak of helicon plasmas at low magnetic fields[J]. Physics of Plasmas, 2006, 13(3): 033504. [20] 赵高, 熊玉卿, 马超, 等. 短管螺旋波等离子体放电中等离子特性测量和模式转变的研究[J]. 物理学报, 2014, 63(23): 235202. [21] LIEBERMAN M A, LICHTENBERG A J.Principles of plasma discharges and materials processing[M]. New York: John Wiley & Sons, 2005. [22] DEGELING A, MIKHELSON N, BOSWELL R W, et al.Characterization of helicon waves in a magnetized inductive discharge[J]. Physics of Plasmas, 1998, 5(3): 572-579. [23] SUZUKI K, NAKAMURA K, OHKUBO H, et al.Power transfer efficiency and mode jump in an inductive RF discharge[J]. Plasma Sources Science and Technology, 1998, 7(1): 13. [24] CHEN F F, BOSWELL R W.Helicons-the past decade[J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1245-1257. [25] SHAMRAI K P, TARANOV V B.Volume and surface rf power absorption in a helicon plasma source[J]. Plasma Sources Science and Technology, 1996, 5(3): 474. [26] CHEN F F, BLACKWELL D D.Upper limit to Landau damping in helicon discharges[J]. Physical review letters, 1999, 82(13): 2677. [27] LKGHT M, CHEN F F.Helicon wave excitation with helical antennas[J]. Physics of Plasmas, 1995, 2(4): 1084-1093. [28] CHEN F F. Radiofrequency field enhancement near ion gyroresonance, TRW Report Task II-3552(1981) [EB/OL].[2020-10-10]. http://www.ee.ucla.edu/~ffchen/Archive/Chen pdf. [29] MILJAK D G, CHEN F F.Helicon wave excitation with rotating antenna fields[J]. Plasma Sources Science and Technology, 1998, 7(1): 61. [30] MELAZZI D, LANCELLOTTI V.A comparative study of radiofrequency antennas for Helicon plasma sources[J]. Plasma Sources Science and Technology, 2015, 24(2): 025024. [31] TYNAN G R, BAILEY III A D, CAMPBELL G A, et al. Characterization of an azimuthally symmetric helicon wave high density plasma source[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997, 15(6): 2885-2892. [32] CHEN F F.Performance of a permanent-magnet helicon source at 27 and 13 MHz[J]. Physics of Plasmas, 2012, 19(9): 093509. [33] BOSWELL R W, PORTEOUS R, PRYTZ A, et al.Some features of RF excited fully ionized low pressure argon plasma[J]. Physics Letters A, 1982, 91(4): 163-166. [34] GAHAN D, DOLINAJ B, HAYDEN C, et al.Retarding field analyzer for ion energy distribution measurement through a radio-frequency or pulsed biased sheath[J]. Plasma Processes and Polymers, 2009, 6(S): 643-648. [35] CHARLES C, BOSWELL R W, PORTEOUS R K.Measurement and modeling of ion energy distribution functions in a low pressure argon plasma diffusing from a 13.56MHz helicon source[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(2): 398-403. [36] CHILD C D.Discharge from hot CaO[J]. Physical Review(Series I), 1911, 32(5): 492. [37] LANGMUIR I.The effect of space charge and residual gases on thermionic currents in high vacuum[J]. Physical Review, 1913, 2(6): 450. [38] BENOIT-CATTIN P, Bernard L C.Anomalies of the Energy of Positive Ions Extracted from High-Frequency Ion Sources. A Theoretical Study[J]. Journal of Applied Physics, 1968, 39(12): 5723-5726. [39] METZE A, ERNIE D W, OSKAM H J.The energy distribution of ions bombarding electrode surfaces in rf plasma reactors[J]. Journal of Applied Physics, 1989, 65(3): 993-998. [40] MILLER P A, RILEY M E.Dynamics of collisionless rf plasma sheaths[J]. Journal of Applied Physics, 1997, 82(8): 3689-3709. [41] TSUI R T C. Calculation of ion bombarding energy and its distribution in rf sputtering[J]. Physical Review, 1968, 168(1): 107. [42] CHARLES C, DEGELING A W, SHERIDAN T E, et al.Absolute measurements and modeling of radio frequency electric fields using a retarding field energy analyzer[J]. Physics of Plasmas, 2000, 7(12): 5232-5241. [43] HERSHKOWITZ N, DING J, BREUN R A, et al.Does high density-low pressure etching depend on the type of plasma source?[J]. Physics of Plasmas, 1996, 3(5): 2197-2202. [44] CHABERT P, PROUST N, PERRIN J, et al.High rate etching of 4H-SiC using a SF6/O2 helicon plasma[J]. Applied Physics Letters, 2000, 76(16): 2310-2312. [45] TAKAHASHI K, MOTOMURA T, ANDO A, et al.Transport of a helicon plasma by a convergent magnetic field for high speed and compact plasma etching[J]. Journal of Physics D: Applied Physics, 2014, 47(42): 425201. [46] YAMAYA K, YAMAKI Y, NAKANISHI H, et al.Use of a helicon-wave excited plasma for aluminum-doped ZnO thin-film sputtering[J]. Applied physics letters, 1998, 72(2): 235-237. [47] JI P, CHEN J, HUANG T, et al.Fast preparation of vertical graphene nanosheets by helicon wave plasma chemical vapor deposition and its electrochemical performance[J]. Diamond and Related Materials, 2020: 107958. [48] CHARLES C.A review of recent laboratory double layer experiments[J]. Plasma sources science and technology, 2007, 16(4): R1. [49] CHARLES C, BOSWELL R W.Current-free double-layer formation in a high-density helicon discharge[J]. Applied Physics Letters, 2003, 82(9): 1356-1358. [50] LIEBERMAN M A, CHARLES C, BOSWELL R W.A theory for formation of a low pressure,current-free double layer[J]. Journal of Physics D: Applied Physics, 2006, 39(15): 3294. [51] 徐宗琦. 螺旋波等离子体推力器工作原理研究[D]. 大连: 大连理工大学, 2016. [52] Ad Astra Rocket Company.[EB/OL].[2020.10.20].http://www.adastrarocket.com/aarc/history. [53] SHABSHELOWITZ A, GALLIMORE A D, PETERSON P Y.Performance of a helicon Hall thruster operating with Xenon, Argon, and Nitrogen[J]. Journal of Propulsion and Power, 2014, 30(3): 664-671. [54] WILLIAMS L T, WALKER M L R. Ion production cost of a gridded helicon ion thruster[J]. Plasma Sources Science and Technology, 2013, 22(5): 055019. [55] 赵高, 王慧慧, 欧阳吉庭, 等. 利用简式探针与光谱法研究螺旋波等离子体的空间分布[C]. 全国等离子体科学技术会议, 2017. [56] 黄建国, 赵华, 任琼英, 等. 螺旋波电推进火星超低轨道维持技术研究[C]//中国宇航学会深空探测技术专业委员会第九届学术年会论文集(上册), 2012. [57] 夏广庆, 王冬雪, 薛伟华, 等. 螺旋波等离子体推进研究进展[J]. 推进技术, 2011, 32(6): 857-863. [58] 杨雄. 螺旋波等离子体推力器理论与实验研究[D]. 长沙: 国防科学技术大学, 2012. [59] 李波, 王一白, 张普卓, 等. VASIMR中螺旋波等离子体源设计[J]. 北京航空航天大学学报, 2012(6): 13-18. |
[1] | 白明远, 王鑫, 甄真, 牟仁德, 何利民, 许振华. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究*[J]. 真空, 2021, 58(4): 12-20. |
[2] | 齐大伟, 李伟华, 李传旭, 吴斌, 陈德江, 唐志共. 大型风洞用离心真空泵气动设计[J]. 真空, 2021, 58(4): 49-53. |
[3] | 王颖, 邢旺, 明悦, 朱一鸣. 等静压机钢带缠绕式工作缸结构强度数值模拟[J]. 真空, 2021, 58(3): 82-85. |
[4] | 吴键坤, 李兆国, 彭丽萍, 易勇, 张继成. 氮分压对ZrN薄膜结构及颜色的影响[J]. 真空, 2021, 58(1): 57-62. |
[5] | 王颖, 明悦, 代玉博, 车恩林, 王标. 真空高温热处理炉石墨炉胆结构优化[J]. 真空, 2020, 57(6): 27-30. |
[6] | 韦贤露, 巩晨阳, 肖剑荣. 射频反应磁控溅射制备MoS2薄膜结构及光学性能*[J]. 真空, 2020, 57(5): 11-13. |
[7] | 张庆芳, 易勇, 罗江山. 溅射功率对铒薄膜微观结构的影响*[J]. 真空, 2020, 57(3): 17-20. |
[8] | 李论, 赵吉宾, 周波, 田同同. 基于角表数据结构的增材制造分层计算方法*[J]. 真空, 2020, 57(3): 84-88. |
[9] | 方波, 张林, 蔡飞, 张世宏. 冷作模具钢等离子渗镀CrVN复合涂层摩擦磨损性能研究*[J]. 真空, 2020, 57(2): 33-39. |
[10] | 王迪, 林松盛, 刘灵云, 杨洪志, 蒋百灵, 薛玉娜, 周克崧. 表面处理技术对钛合金疲劳性能影响的研究进展*[J]. 真空, 2019, 56(6): 36-42. |
[11] | 刘朝, 邢洪硕, 苏家豪, 张钧深, 梁帅, 谢元华, 韩进. 真空电梯现状与发展趋势探讨*[J]. 真空, 2019, 56(6): 54-59. |
[12] | 伍醒, 蒋爱华, 程勇. 射频功率对DLC薄膜结构和力学性能的影响[J]. 真空, 2019, 56(4): 34-36. |
[13] | 李阳, 同朴超, 李军仁, 朱军利, 张卓卓, 曹轶轲. 真空等离子焊箱用焊枪的改进优化[J]. 真空, 2019, 56(4): 71-73. |
[14] | 刘兴胜, 解永蓉, 郑颖, 费渭南. 相对法校准真空漏孔及不确定度的评定[J]. 真空, 2019, 56(2): 66-68. |
[15] | 郭崇武, 孙立臣, 孙立志, 齐飞飞, 李文斌. 单 O 型圈密封结构中双层密封泄漏机理研究[J]. 真空, 2018, 55(6): 19-23. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 36
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 300
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|