欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (6): 48-54.doi: 10.13385/j.cnki.vacuum.2021.06.09

• 薄膜 • 上一篇    下一篇

电弧离子镀中Ti大颗粒在空间传输过程中速度和能量变化特征*

魏永强   

  1. 郑州航空工业管理学院航空宇航学院,河南 郑州 450046
  • 收稿日期:2021-04-06 出版日期:2021-11-25 发布日期:2021-11-30
  • 作者简介:魏永强(1980-),男,河南省长葛市人,博士,副教授。
  • 基金资助:
    *国家自然科学基金资助项目(51401182),河南省高等学校重点科研项目指导计划(22B430030)

Characteristics of Spatial Transmission Velocity and Energy of Ti Macroparticles in Arc Ion Plating Processing

WEI Yong-qiang   

  1. School of Aeronautics and Astronautics, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
  • Received:2021-04-06 Online:2021-11-25 Published:2021-11-30

摘要: 电弧离子镀所制备薄膜中的大颗粒(MPs)缺陷是当前研究热点之一,本文利用尘埃等离子体理论,以Ti大颗粒为研究对象,对Ti大颗粒尺寸与其传输过程中的速度和能量变化进行了计算,解释了大颗粒在薄膜表面形貌变化的主要原因。在电弧等离子体传输过程中,在不同的工作距离下离子和电子的密度发生改变,大颗粒受到等离子体中离子和电子的碰撞,传输速度和能量发生变化,使得大颗粒在到达基体表面时保持半固态和液态。与基体表面发生碰撞后,大颗粒的形貌呈现扁平的椭圆形和长条形。

关键词: 电弧离子镀, 大颗粒, 等离子体, 速度

Abstract: During arc ion plating process, the macroparticle defects are focused in recent years. The relationship between Ti macroparticle size, velocity and energy change in the spatial transmission was calculated, which was used to account for the main change reasons of the macroparticle morphology in the coatings surface. During the transmission process, the density of ions and electrons changed at different working distances. The Ti macroparticles were affected by the collisions of ions and electrons, which caused the velocity and energy changes of Ti macroparticles. The Ti macroparticles remained semi-solid and liquid when reaching the substrate surface. The morphologies of Ti macroparticles showed flat oval and strip after the collision with the substrate surface.

Key words: arc ion plating, macroparticles(MPs), plasma, velocity

中图分类号: 

  • TB383.2
[1] DAALDER J E.Components of cathode erosion in vacuum arcs[J]. Journal of Physics D: Applied Physics, 1976, 9(16): 2379-2395.
[2] DAALDER J E.A cathode spot model and its energy balance for metal vapour arcs[J]. Journal of Physics D: Applied Physics, 1978, 11(12): 1667-1682.
[3] UTSUMI T, ENGLISH J H.Study of electrode products emitted by vacuum arcs in form of molten metal particles[J]. Journal of Applied Physics, 1975, 46(1): 126-131.
[4] MONTEIRO O R, ANDERS A.Vacuum-arc-generated macroparticles in the nanometer range[J]. IEEE Transactions on Plasma Science, 1999, 27(4): 1030-1033.
[5] ZHIRKOV I, POLCIK P, KOLOZSVÁRI S, et al. Macroparticle generation in DC arc discharge from a WC cathode[J]. Journal of Applied Physics, 2017, 121(10): 103305.
[6] SHIAO M H, CHANG Z C, SHIEU F S.Characterization and formation mechanism of macroparticles in arc ion-plated CrN thin films[J]. Journal of The Electrochemical Society, 2003, 150(5): 320-324.
[7] 魏永强, 魏永辉, 蒋志强, 等. 基体放置状态与脉冲偏压幅值对大颗粒形貌和分布的影响规律[J]. 真空科学与技术学报, 2014, 34(10): 1021-1028.
[8] 魏永强, 魏永辉, 蒋志强, 等. 放置方向和沉积时间对 Ti 大颗粒分布状态的影响[J]. 表面技术, 2014, 43(5): 6-10+41.
[9] 魏永强, 刘建伟, 文振华, 等. 脉冲偏压占空比和放置状态对大颗粒分布规律的影响[J]. 热加工工艺, 2015, 44(4): 134-137.
[10] 魏永强, 贾爱芹, 蒋志强, 等. 靶基间距对电弧离子镀中大颗粒形貌和分布的影响[J]. 金属热处理, 2014, 39(7): 130-134.
[11] BOXMAN R L, GOLDSMITH S.Macroparticle contamination in cathodic arc coatings: generation, transport and control[J]. Surface & Coatings Technology, 1992, 52(1): 39-50.
[12] SHALEV S, BOXMAN R L, GOLDSMITH S.Velocities and emission rates of cathode-produced molybdenum macroparticles in a vacuum arc[J]. Journal of Applied Physics, 1985, 58(7): 2503-2507.
[13] NITTER T.Levitation of dust in rf and dc glow discharges[J]. Plasma Sources Science and Technology, 1996, 5(1): 93-111.
[14] KIMBLIN C W.Erosion and ionization in the cathode spot regions of vacuum arcs[J]. Journal of Applied Physics, 1973, 44(7): 3074-3081.
[15] VYSKOČIL J, MUSIL J. Cathodic arc evaporation in thin film technology[J]. Journal of Vacuum Science & Technology A, 1992, 10(4): 1740-1748.
[16] BOXMAN R L.Interferometric measurement of electron and vapor densities in a high-current vacuum arc[J]. Journal of Applied Physics, 1974, 45(11): 4835-4846.
[17] 黄美东. 脉冲偏压电弧离子镀低温沉积研究 [D]. 大连: 大连理工大学, 2002.
[18] BEN-SHALOM A, BOXMAN R L, GOLDSMITH S.Ion current collected at various distances and argon background pressures in a copper vacuum arc[J]. IEEE Transactions on Plasma Science, 1993, 21(5): 435-439.
[19] DAVIS W D, MILLER H C.Analysis of the electrode products emitted by dc arcs in a vacuum ambient[J]. Journal of Applied Physics, 1969, 40(5): 2212-2221.
[20] ANDERS A.Growth and decay of macroparticles:a feasible approach to clean vacuum arc plasmas?[J]. Journal of Applied Physics, 1997, 82(8): 3679-3688.
[21] BOXMAN R L, GOLDSMITH S.The interaction between plasma and macroparticles in a multi-cathode-spot vacuum arc[J]. Journal of Applied Physics, 1981, 52(1): 151-161.
[22] TAY B K, ZHAO Z W, CHUA D H C. Review of metal oxide films deposited by filtered cathodic vacuum arc technique[J]. Materials Science and Engineering R, 2006, 52(1-3): 1-48.
[23] KUTZNER J, MILLER H C.Integrated ion flux emitted from the cathode spot region of a diffuse vacuum arc[J]. Journal of Physics D: Applied Physics, 1992, 25(4): 686-693.
[24] 张克华, 董是元. 钛及钛合金的焊接[M]. 北京: 机械工业出版社, 1985: 1-2.
[25] RYSANEK F.Charging of macroparticles ejected from a pulsed vacuum arc[D]. United States Illinois: University of Illinois at Urbana-Champaign, 2007.
[1] 杨彤, 尹政鑫, 邱吉尔, 杨胜源, 张清波, 余德平. 等离子体雾化用等离子体发生器动静态特性研究*[J]. 真空, 2021, 58(5): 66-71.
[2] 冯杰, 成荣, 赵勇, 王彦龙, 王尚民, 张宏, 贾艳辉. 等离子体接触器放电振荡的频谱分析研究*[J]. 真空, 2021, 58(5): 72-76.
[3] 涂军, 宋文杰, 张斌, 余德平, 李裔红. 水蒸气等离子体发生器工作特性实验研究[J]. 真空, 2021, 58(4): 87-92.
[4] 周美丽, 施昌勇, 陈强. 微波表面波对管内壁沉积DLC薄膜的均匀性的研究[J]. 真空, 2021, 58(3): 39-44.
[5] 吴彦超, 刘豫瑶, 刘洋, 高晟元, 黄美东. 调制比对电弧离子镀Cr/TiN纳米多层膜力学性能的影响*[J]. 真空, 2021, 58(2): 10-14.
[6] 柴昊, 贾军伟, 王斌, 李鹏, 崔爽, 冯旭, 李伟, 刘展, 李绍飞, 陈权. 紧凑型微波ECR等离子体源的设计及其特性研究[J]. 真空, 2021, 58(1): 6-9.
[7] 武英桐, 李晓敏, 白睿, 王东伟, 王宇, 黄美东. 附加偏置电场对电弧离子镀TiN薄膜结构和性能的影响*[J]. 真空, 2021, 58(1): 63-66.
[8] 殷冀平, 乔宏, 蔺增, 巴德纯. 基于LabVIEW的朗缪尔单探针数据处理系统[J]. 真空, 2020, 57(6): 48-53.
[9] 谭飞, 林松盛, 石倩, 代明江, 杜伟, 汪云程, 吕亮. 电弧离子镀制备NiCrAlY涂层及其抗高温氧化性能*[J]. 真空, 2020, 57(5): 7-10.
[10] 张天一, 杨志浩, 刘云辉, 马玉田, 王波. 石英板夹层中窄电极结构与材料对直流放电的影响*[J]. 真空, 2020, 57(5): 61-65.
[11] 徐法俭, 黄志婷, 刘宝新. 基于热力学理论液环压缩系统设计方法及工程应用[J]. 真空, 2020, 57(5): 79-84.
[12] 王福贞. “热处理技术”和 “真空镀膜技术”在走向融合[J]. 真空, 2020, 57(5): 1-6.
[13] 赵杰, 许丽, 李建, 王坤, 王世庆. 霍尔推力器内放电等离子体数值仿真分析*[J]. 真空, 2020, 57(4): 54-59.
[14] 王晓明, 鄂东梅, 武俊生, 张绪跃, 周艳文. 基于等离子体在磁控溅射增强的模拟*[J]. 真空, 2020, 57(3): 5-6.
[15] ВВ.А.ШАПОВАЛОВ, 许小海, 汪源, 孙足来, 宋青竹, 李建军. 等离子体技术在冶炼和铸造生产中的应用*[J]. 真空, 2019, 56(5): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!