欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (5): 72-76.doi: 10.13385/j.cnki.vacuum.2021.05.12

• 测量与控制 • 上一篇    下一篇

等离子体接触器放电振荡的频谱分析研究*

冯杰, 成荣, 赵勇, 王彦龙, 王尚民, 张宏, 贾艳辉   

  1. 兰州空间技术物理研究所,真空技术与物理重点实验室,甘肃 兰州 730000
  • 收稿日期:2020-09-20 出版日期:2021-09-25 发布日期:2021-09-23
  • 作者简介:冯杰(1988-),男,甘肃省渭源人,硕士,工程师。
  • 基金资助:
    *国家自然科学基金(12005087); 国家自然科学青年基金(11702123); 国防科工局稳定支持重点实验室基金

FFT Analysis of Discharge Oscillations of Plasma Contactor

FENG Jie, CHENG Rong, ZHAO Yong, WANG Yan-long, WANG Shang-min, ZHANG Hong, JIA Yan-hui   

  1. Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000,China
  • Received:2020-09-20 Online:2021-09-25 Published:2021-09-23

摘要: 为了验证接触器工作时发生振荡的主要区域,设计试验寻找接触器进入羽流工况的阈值条件,确认当“供气工质流量—放电电流”的比值超过10sccm/A时,接触器将会进入到羽流工作模式。在该区域中接触器将会发生较为剧烈的振荡,放电电压峰-峰值一般超过5V。经频谱分析(FFT),导致该放电不稳定性的原因是需要用较少供气工质产生较多放电电流时的电离不稳定性,这种不稳定性对应的频率分量约在1MHz左右,采用增加供气流量或者降低放电电流的方法可以有效地抑制该种振荡的发生。

关键词: 等离子体接触器, 放电振荡, 频谱分析, FFT

Abstract: In order to find the main area where the contactor vibrates during operation, an experiment is designed to find the threshold condition for the contactor to enter the plume working condition. We confirm that when the ratio of“gas flow rate-discharge current” exceeds 10sccm/A, the contactor enter the plume working mode. In this area, the contactor will oscillate more severely, and the peak-to-peak discharge voltage generally exceeds 5V. According to FFT analysis, the cause of the discharge instability is the ionization instability when a smaller gas supply is inlet to generate more discharge current. The frequency component corresponding to this instability is about 1MHz. The more air flow rate, or the smaller discharge current can effectively suppress the occurrence of this kind of oscillation.

Key words: plasma contactor, discharge oscillation, spectrum analysis, FFT

中图分类号: 

  • TB43
[1] BEATTIE J R, MARSHALL J A, BURCH J L, et al.Design, Qualification, and On-Orbit Performance of the ATLAS Plasma Contactor[C]. IEPC-93-010, International Electric Propulsion Conference, Seattle, Washington, September, 1993.
[2] BEATTIE J R, WILLIAMSON W S, MATOSSIAN J N, et al.AIAA-1989-1603, High-Current Plasma Contactor Neutralizer System[C]. 3rd International Conference on Tethers in Space-Toward Flight, San Francisco, California, May, 17-19, 1989.
[3] KATZ I, PARKS D E, GARDNER B M, et al.Spectral Line Emission by the SEPAC Plasma Contactor: Comparison Between Measurement & Theory[C].AIAA-95-0369, 33rd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January, 9-12, 1995.
[4] POLK J E, MARRIES C, THORNBER B, et al.Temperature Distributions in Hollow Cathode Emitters[C]. AIAA-2004-4116, 40th Joint Propulsion Conference, Ft.Lauderdale, Florida, July, 11-14, 2004.
[5] 权路路, 邢伟, 鹿畅, 等.霍尔推力器预电离对低频振荡及壁面腐蚀影响的研究[J]. 中国空间科学技术, 2016, 36(1): 51-57.
[6] 胡俊锋, 刘辉, 李建置, 等. 会切磁场推力器低频振荡特性[J]. 中国空间科学技术, 2016, 36(1): 26-34.
[7] 江滨浩, 赵一男, 魏立秋, 等. 霍尔推力器振荡问题的研究综述[J]. 宇航学报, 2009, 30(6): 2062-2071.
[8] 张雯, 史锐, 费王华, 等. 电感补偿对霍尔推力器振荡影响的仿真与实验研究[J]. 导弹与航天运载技术, 2015, 341(5): 99-102.
[9] Goebel Dan M, Jameson Kristina, Katz Ira, et al.Mikellides Energetic Ion Production and Keeper Erosion in Hollow Cathode Discharges[C]. 29th International Electric Propulsion Conference, 2005: 266.
[10] KATZ I, MIKELLIDES I G, GOEBEL D M. Model of the Plasma Potential Distribution in the Plume of a Hollow Cathode[C]. AIAA Paper2004-4108, 40th Joint Propulsion Conference, Ft.Lauderdale, Florida, July, 11-14, 2004.
[11] MIKELLIDES I G, KATZ I, GOEBEL D M, et al.Towards theIdentification of the Keeper Erosion Mechanisms: 2-D Theoretical Modelof the Hollow Cathode[C]. AIAA-2006-5151, 42nd Joint Propulsion Conference, Sacramento, California, July, 10-13, 2006.
[12] BOYD L, CROFTON M.Modeling the plasma plume of a hollow cathode[J]. Journal of Applied Physics, 2004, 95(7): 3285-3296.
[13] MIKELLIDES I, KATZ I, GOEBEL D M.Numerical Simulation of the Hollow Cathode Discharge Plasma Dynamics[C]. IEPC-2005-200, 29th International Electric Propulsion Conference, Princeton University, Princeton, New Jersey, October, 31-November 4, 2005.
[14] JAMESON K, GOEBEL D M, WATKINS R.Hollow Cathode and Thruster Discharge Chamber Plasma Measurements Using High-Speed Scanning Probes[C]. IEPC-2005-269, 29th International ElectricPropulsion Conference, Princeton University, Princeton, New Jersey, October 31-November 4, 2005.
[15] JAMESON K, GOEBEL D M, WATKINS R.Hollow Cathode and Keeper Region Plasma Measurements[C]. AIAA-2005-3667, 41st Joint PropulsionConference, Tucson, Arizona, July, 11-14, 2005.
[16] HERMAN D A, GALLIMORE A D.Near Discharge Cathode Assembly Plasma Potential Measurements in a 30-cm NSTAR Type Ion Engine Midst Beam Extraction[C]. AIAA-2004-3958, 40th Joint Propulsion Conference, Ft.Lauderdale, Florida, July, 11-14, 2004.
[17] GOEBEL D M, JAMESON K, KATZ I, et al.Energetic Ion Production and Keeper Erosion in Hollow Cathode Discharges[C]. IEPC-2005-266, 29th International Electric Propulsion Conference, Princeton University, Princeton, New Jersey, October, 31-November 4, 2005.
[18] GOEBEL D M, JAMESON K, KATZ I, et al.Plasma Potential Behavior and Plume Mode Transitions in Hollow Cathode Discharge[C]. IEPC-2007-027, 30th International Electric Propulsion Conference, Florence, Italy, September 17-20, 2007.
[1] 李建鹏, 张驰, 李建昌. 柔性电子器件疲劳特性的研究进展*[J]. 真空, 2021, 58(5): 11-15.
[2] 陈谦, 杨丽珍, 刘忠伟, 张海宝, 陈强. 分子层沉积纳米薄膜的现状和发展[J]. 真空, 2021, 58(5): 26-31.
[3] 游锦山. 真空涂层设备SIS设计及应用[J]. 真空, 2021, 58(5): 80-84.
[4] 魏梦瑶, 王辉, 韩文芳, 王红莉, 苏一凡, 唐春梅, 代明江, 石倩. 中频磁控溅射制备氧化钨薄膜及电致变色性能研究*[J]. 真空, 2021, 58(5): 50-56.
[5] 张晓霞, 邓金祥, 孔乐, 李瑞东, 杨子淑, 张杰. 不同浓度的Si掺杂β-Ga2O3薄膜的制备及研究[J]. 真空, 2021, 58(5): 57-61.
[6] 吴忠举, 白枭, 成洋洋, 周社柱. 等静压石墨表面SiC涂层的制备与性能表征[J]. 真空, 2021, 58(5): 62-65.
[7] 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2021, 58(5): 110-112.
[8] 付学成, 徐锦滨, 乌李瑛, 黄胜利, 王英. 小圆形平面靶倾斜磁控溅射镀膜均匀性研究*[J]. 真空, 2021, 58(4): 1-5.
[9] 纪建超, 颜悦, 哈恩华. 溶胶-凝胶法制备AZO薄膜的研究进展*[J]. 真空, 2021, 58(4): 30-35.
[10] 白明远, 王鑫, 甄真, 牟仁德, 何利民, 许振华. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究*[J]. 真空, 2021, 58(4): 12-20.
[11] 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2021, 58(4): 103-104.
[12] 张健, 牛夏斌, 李建浩, 齐振华. 射频磁控溅射对PET基材制备铝薄膜的性能影响[J]. 真空, 2021, 58(4): 21-24.
[13] 罗军文. 大型金属卷材表面改性连续卷绕镀膜生产线的研制[J]. 真空, 2021, 58(3): 35-38.
[14] 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2021, 58(3): 86-88.
[15] 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2021, 58(2): 86-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!