欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (3): 24-41.doi: 10.13385/j.cnki.vacuum.2023.03.05

• 薄膜 • 上一篇    下一篇

三种溅射深度剖析定量分析模型解析表达式的比较*

钟凤敏1, 王穗鹏1, 郑锦权1, 杨浩1, Siegfried Hofmann1,2, 徐从康1,3, 王江涌1,3   

  1. 1.汕头大学物理系,广东 汕头 515063;
    2.马克斯普朗克智能系统研究所,德国 斯图加特 D-70569;
    3.汕头大学半导体材料与器件研究中心,广东 汕头 515063
  • 收稿日期:2022-11-06 出版日期:2023-05-25 发布日期:2023-05-30
  • 通讯作者: 王江涌,教授;徐从康,教授。
  • 作者简介:钟凤敏(1997-),女,广东湛江人,硕士。
  • 基金资助:
    *广东省自然科学基金项目(2022A1515010213); 广东大学重点平台(2021GCZX009); 广东大学生科技创新培育专项资金资助项目(攀登计划,pdjh2021b0194)

Comparison of the Analytical Expressions of Three Quantitative Sputtering Depth Profiling Models

ZHONG Feng-min1, WANG Sui-peng1, ZHENG Jin-quan1, YANG Hao1, Siegfried Hofmann1,2, XU Cong-kang1,3, WANG Jiang-yong1,3   

  1. 1. Department of Physics, Shantou University, Shantou 515063, China;
    2. Max Planck Institute for Intelligent Systems, Stuttgart D-70569, Germany;
    3. Center of Semiconductor Materials and Devices, Shantou University, Shantou 515063, China
  • Received:2022-11-06 Online:2023-05-25 Published:2023-05-30

摘要: 本文系统地讨论了三种广泛应用于溅射深度剖析定量分析的原子混合-粗糙度-信息深度(MRI)模型、上下坡(UDS)模型与粗糙度-级联混合-反冲注入(RMR)模型的解析表达式。先从定义、公式推导、仿真结果分析三方面逐一分析了这三种模型对应的剖面特征,再通过其对应的深度分辨率子函数、深度分辨率函数、分析膜层厚度的解析表达式以及实验数据的拟合,将三种模型进行了细致的比较。最后解释了上下坡模型存在的不足,纠正了粗糙度-级联混合-反冲注入模型存在的错误描述,实测/模拟深度剖面的动态特性验证了原子混合-粗糙度-信息深度模型的可靠性和优越性。

关键词: 深度剖析定量分析, 原子混合-粗糙度-信息深度模型, 上下坡模型, 粗糙度-级联混合-反冲注入模型, 解析表达式, 动态特性

Abstract: In this paper, the analytical expressions of three widely used quantitative depth profiling models, atomic mixing-roughness-information depth(MRI) model, up-and-down slope(UDS) model and roughness-cascade mixing-recoil implantation(RMR)model are systematically discussed. Firstly, the profile characteristics of the three models are analyzed according to definition, formula derivation and simulation analysis. Then, these models are compared in details with the partial depth resolution functions, the depth resolution function, the analytical expressions of analyzed thick film layer and the fitting of experimental data. Finally, the shortcomings of the UDS model are explained, and the incorrect description of the RMR model are corrected. The reliability and superiority of the MRI model are verified by the dynamic characteristics of measured/simulated depth profile.

Key words: quantitative depth profiling, MRI model, UDS model, RMR model, analytical expression, dynamic characteristic

中图分类号:  TB303

[1] LIAN S Y, WANG Z J, WANG C L, et al.Deconvolution method for obtaining directly the original in-depth distribution of composition from measured sputter depth profile[J]. Vacuum, 2019, 166: 196-200.
[2] 康红利, 劳珏斌, 刘毅, 等. SIMS 溅射深度剖析的定量分析[J]. 真空, 2015, 52(2): 44-49.
[3] 康红利, 简玮, 韩逸山, 等. 溅射深度剖析定量分析及其应用研究进展[J]. 汕头大学学报(自然科学版), 2016, 31(2): 3-24.
[4] LIAN S Y, LIN B, YAN X L, et al.Preferential sputtering and mass conservation in AES and SIMS depth profiling[J]. Vacuum, 2019, 160: 109-113.
[5] HOFMANN S, HAN Y S, WANG J Y.Depth resolution and preferential sputtering in depth profiling of sharp interfaces[J]. Applied Surface Science, 2017, 410: 354-362.
[6] HOFMANN S, LIU Y, WANG J Y, et al.Analytical and numerical depth resolution functions in sputter profiling[J]. Applied Surface Science, 2014, 314: 942-955.
[7] DOWSETT M G, BARLOW R D.Characterization of sharp interfaces and delta doped layers in semiconductors using secondary ion mass spectrometry[J]. Analytica Chimica Acta, 1994, 297(1/2): 253-275.
[8] DOWSETT M G, CHU D P.Quantification of secondary-ion-mass spectroscopy depth profiles using maximum entropy deconvolution with a sample independent response function[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1998, 16(1): 377-381.
[9] MOON D W.Summary of ISO/TC 201 standard: XV.ISO 20341: 2003—Surface chemical analysis—secondary ion mass spectrometry—method for estimating depth resolution parameters with multiple delta-layer reference materials[J]. Surface and Interface Analysis, 2005, 37(7): 646-647.
[10] HOFMANN S.Cascade mixing limitations in sputter profiling[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1992, 10(1): 316-322.
[11] HOFMANN S.Atomic mixing, surface roughness and information depth in high-resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and Interface Analysis, 1994, 21(9): 673-678.
[12] KUDRIAVTSEV Y A.Restoration of the initial in-depth distribution of an element from a profile measured by SIMS[J]. Journal of Surface Investigation:X-ray, Synchrotron and Neutron Techniques, 2020, 14(1): 92-96.
[13] KUDRIAVTSEV Y, GALLARDO S, VILLEGAS A, et al.Depth-profile analysis of nanostructures by SIMS:depth resolution function[J]. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72(7): 895-898.
[14] KUDRIAVTSEV Y, ASOMOZA R, GALLARDO-HERNANDEZ S, et al.Reconstruction of original indium distribution in InGaAs quantum wells from experimental SIMS depth profiles[J]. Physica B:Condensed Matter, 2014, 453: 53-58.
[15] WUCHER A, KRANTZMAN K D.A statistical approach to delta layer depth profiling[J]. Surface and Interface Analysis, 2012, 44(9): 1243-1248.
[16] 周刚, 吕凯, 刘远鹏, 等.柔性功能薄膜辉光光谱深度分辨率分析[J]. 真空, 2020, 57(4): 1-5.
[17] WANG C L, LI J, LIU X X, et al.Optimization of the two parameters in the deconvolution procedure for obtaining the original in-depth distribution of composition from measured sputter depth profile by genetic algorithm[J]. Vacuum, 2021, 184: 109866.
[18] LIAN S, FOURIE A, WANG J, et al.Effects of sputtering induced artifacts on the determination of diffusion coefficient: application to Ni/Cu system[J]. Vacuum, 2022, 202: 111206.
[19] HOFMANN S.Sputter depth profile analysis of interfaces[J]. Reports on Progress in Physics, 1998, 61(7): 827-888.
[20] KANG H L, LAO J B, LI Z P, et al.Reconstruction of GaAs/AlAs supperlattice multilayer structure by quantification of AES and SIMS sputter depth profiles[J].Applied Surface Science, 2016, 388: 584-588.
[21] 李静, 谭张华, 刘星星, 等.利用遗传算法定量分析 Ni/Cr 多层膜俄歇深度谱[J]. 真空, 2021, 58(4): 6-11.
[22] HOFMANN S, HÖSLER W, VON CRIEGERN R. AES depth profiling of Ta-Si multilayers:dependence of depths resolution on Ar+ ion energy and indicence angle[J]. Vacuum, 1990, 41(7-9): 1790-1791.
[23] HOFMANN S.Advances in sputter depth profiling using AES[J]. Surface and Interface Analysis, 2003, 35(7): 556-563.
[24] HOFMANN S.Characterization of nanolayers by sputter depth profiling[J]. Applied Surface Science, 2005, 241(1/2): 113-121.
[25] HOFMANN S.Auger-and X-ray photoelectron spectroscopy in materials science[M]//Quantitative Compositional Depth Profiling.Springer, 2013: 297-408.
[26] FIORI A, JOMARD F, TERAJI T, et al.Improved depth resolution of secondary ion mass spectrometry profiles in diamond: a quantitative analysis of the delta-doping[J]. Thin Solid Films, 2014, 557: 222-226.
[27] GAUTIER B, PROST R, PRUDON G, et al.Deconvolution of SIMS depth profiles of boron in silicon[J]. Surface and Interface Analysis, 1996, 24(11): 733-745.
[28] GALLARDO S, KUDRIATSEV Y, VILLEGAS A, et al.SIMS characterization of segregation in InAs/GaAs heterostructures[J]. Applied Surface Science, 2008, 255(4): 1341-1344.
[29] LITTMARK U, HOFER W O.Recoil mixing in solids by energetic ion beams[J]. Nuclear Instruments and Methods, 1980, 168(1-3): 329-342.
[30] WITTMAACK K. Detailed evaluation of the analytical resolution function[J]. Applied Surface Science, 2003, 203/204: 268-272.
[31] HOFMANN S.From depth resolution to depth resolution function: refinement of the concept for delta layers, single layers and multilayers[J]. Surface and Interface Analysis, 1999, 27(9): 825-834.
[32] IWASAKI H, NAKAMURA S.On the depth profiles by ESCA[J]. Surface Science, 1976, 57(2): 779-780.
[33] HOFMANN S.Quantitative depth profiling in surface analysis: a review[J]. Surface and Interface Analysis, 1980, 2(4): 148-160.
[34] WITTMAACK K, MUTZKE A.Depth of origin of sputtered atoms:exploring the dependence on relevant target properties to identify the correlation with low-energy ranges[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012, 281: 37-44.
[35] YANG M H, MOUNT G, MOWAT I.Ultrashallow profiling using secondary ion mass spectrometry: estimating junction depth error using mathematical deconvolution[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2006, 24(1): 428-432.
[36] HOFMANN S, MADER W.Determination of the atomic mixing layer in sputter profiling of Ta/Si multilayers by TEM and AES[J]. Surface and Interface Analysis, 1990, 15(12): 794-796.
[37] 刘毅, 王江涌. 择优溅射对深度剖析谱和深度分辨率的影响[J]. 真空, 2013, 50(1): 15-19.
[38] HOFMANN S, LIAN S Y, HAN Y S, et al.Depth resolution and preferential sputtering in depth profiling of delta layers[J]. Applied Surface Science, 2018, 455: 1045-1056.
[1] 李静, 谭张华, 刘星星, 陈颖琳, 李豪文, 杨浩, 王昌林, 王江涌, 徐从康. 利用遗传算法定量分析Ni/Cr多层膜俄歇深度谱*[J]. 真空, 2021, 58(4): 6-11.
[2] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌. 柔性功能薄膜辉光光谱深度分辨率分析*[J]. 真空, 2020, 57(4): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .