欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (6): 9-14.doi: 10.13385/j.cnki.vacuum.2023.06.02

• 测量与控制 • 上一篇    下一篇

真空计量的量子化研究进展

郑一鸣, 王旭迪, 吴俊   

  1. 合肥工业大学机械工程学院,安徽 合肥 230009
  • 收稿日期:2023-03-09 出版日期:2023-11-25 发布日期:2023-11-27
  • 通讯作者: 吴俊,讲师。
  • 作者简介:郑一鸣(1999-),男,安徽省阜阳市人,硕士。

Research Progress in Quantization of Vacuum Metrology

ZHENG Yi-ming, WANG Xu-di, WU Jun   

  1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2023-03-09 Online:2023-11-25 Published:2023-11-27

摘要: 欧洲计量创新与研究计划(EMPIR)的量子帕斯卡(Quantum Pascal)项目旨在开发基于光子的真空计量标准,以将压力的国际制单位(Pa)转换为气体密度单位。该项目的主要研究方向包括折射率法、吸收光谱法和冷原子法等基于光学方法的量子真空标准,这些方法各有特点,且都具备高精度和高可重复性的优点。其中,折射率法和吸收光谱法主要基于气体分子在真空中的相互作用机制进行测量,而冷原子法则是利用玻色-爱因斯坦凝聚态的性质进行测量。本文对这些原理和应用装置进行了详细介绍,为量子真空计量技术的发展提供了有益的参考。这些技术的发展将有助于实现更准确的真空测量和更精确的科学研究,对于半导体制造、材料科学、量子信息等领域都具有重要意义。

关键词: 真空计量, 量子真空, 折射率法, 冷原子, 吸收光谱法

Abstract: The Quantum Pascal project under the european metrology programme for innovation and research(EMPIR) aims to develop a photon-based vacuum measurement standard for converting the international unit of pressure(Pa) into a unit of gas density. The project focuses on various optical methods, including the refractive index method, absorption spectroscopy, and the cold atom method, to establish quantum vacuum standards. These methods offer high precision and repeatability, and each has its unique features. The refractive index method and absorption spectroscopy rely on the interaction mechanism of gas molecules in vacuum, while the cold atom method uses the properties of Bose-Einstein condensed matter. In this paper, these principles and application devices are introduced in detail, providing a valuable reference for the development of quantum vacuum metrology technology. The advancement of these technologies will enable more accurate vacuum measurements and more precise scientific research, which is crucial for various fields, such as semiconductor manufacturing, materials science, and quantum information.

Key words: vacuum metrology, quantum vacuum, refractive index method, cold atom, absorption spectroscopy

中图分类号:  TB771

[1] THAKUR V, YADAV S, KUMAR A.Realization of quantum pascal using natural fundamental physical constants[J]. Mapan, 2020, 35(4): 595-599.
[2] 李得天, 成永军, 习振华. 量子真空标准研究进展[J]. 宇航计测技术, 2018, 38(3): 1-15.
[3] 习振华, 李得天, 成永军, 等. 光学方法在真空计量中应用研究进展[J]. 真空与低温, 2016, 22(6): 311-318.
[4] 许玉蓉, 刘洋洋, 王进, 等. 基于气体折射率方法的真空计量[J]. 物理学报, 2020, 69(15): 250-256.
[5] SONG H, KIM J, WOO S.Development of a refractive index measurement system for vacuum pressure measurement[J]. Journal of the Korean Physical Society, 2021, 78(2): 124-129.
[6] RICKER J, HENDRICKS J, EGAN P, et al.Towards photonic based pascal realization as a primary pressure standard[J]. Journal of Physics: Conference Series, 2018, 1065(16): 2-6.
[7] SILVESTRI Z, BENTOUATI D, OTAL P, et al.Towards an improved helium-based refratometer for pressure measurements[J]. Acta IMEKO, 2021, 9(5): 305-309.
[8] 贾文杰, 习振华, 范栋, 等. 基于Fabry-Perot激光谐振腔的量子真空计量技术研究[J]. 光学学报, 2020, 40(22): 149-156.
[9] ZAKRISSON J, SILANDER I, FORSSÉN C, et al. Simulation of pressure-induced cavity deformation-the 18SIB04 Quantumpascal EMPIR project[J]. Acta IMEKO, 2021, 9(5): 281-286.
[10] SILANDER I, FORSSÉN C, ZAKRISSON J, et al. An invar-based fabry-perot cavity refractometer with a gallium fixed-point cell for assessment of pressure[J]. Acta IMEKO, 2021, 9(5): 293-298.
[11] ZELAN M, SILANDER I, FORSSÉN C, et al. Recent advances in fabry-perot-based refractometry utilizing gas modulation for assessment of pressure[J]. Acta IMEKO, 2020, 9(5): 299-304.
[12] AXNER O, SILANDER I, FORSSÉN C, et al. Ability of gas modulation to reduce the pickup of fluctuations in refractometry[J]. Journal of the Optical Society of America B, 2020, 37(7): 2419-2436.
[13] SILANDER I, HAUSMANINGER T, FORSSÉN C, et al. Gas equilibration gas modulation refractometry for assessment of pressure with sub-ppm precision[J]. Journal of Vacuum Science & Technology B, 2019, 37(4): 042901.
[14] SILANDER I, HAUSMANINGER T, ZELAN M, et al. Gas modulation refractometry for high-precision assessment of pressure under non-temperature-stabilized conditions[J]. Journal of Vacuum Science & Technology A, 2018, 36(3): 03E105.
[15] FORSSÉN C, SILANDER I, SZABO D, et al. A transportable refractometer for assessment of pressure in the kPa range with ppm level precision[J]. Acta IMEKO, 2020, 9(5): 287-292.
[16] 李毅, 李得天, 王多书. 冷原子量子真空计量技术研究进展[J]. 真空与低温, 2019, 25(3): 145-155.
[17] MAKHALOV V, MARTIYANOV K, TURLAPOV A.Primary vacuometer based on an ultracold gas in a shallow optical dipole trap[J]. Metrologia, 2016, 53(6): 1287-1294.
[18] FEDCHAK J, ABBOTT P, HENDRICKS J, et al.Review article:recommended practice for calibrating vacuum gauges of the ionization type[J]. Journal of Vacuum Science & Technology A, 2018, 36(3): 030802.
[19] BAYARD R T, ALPERT D.Extension of the low pressure range of the ionization gauge[J]. Review of Scientific Instruments, 1950, 21(6): 571-572.
[20] ECKEL S, BARKER D S, FEDCHAK J A, et al.Challenges to miniaturizing cold atom technology for deployable vacuum metrology[J]. Metrologia, 2018, 55(5): 182-193.
[21] LACKNER M.Tunable diode laser absorption spectroscopy(TDLAS) in the process industries-a review[J]. Reviews in Chemical Engineering, 2007, 23(2): 65-147.
[1] 李晓刚, 胡勇, 高峰, 胡湘娥, 甘智华. 低温高真空环境下气体吸附材料吸气性能测试系统设计[J]. 真空, 2023, 60(1): 42-45.
[2] 卢少波, 张吉峰, 韩永超, 杨坤, 唐榕. 真空度测量仪动态校准系统[J]. 真空, 2022, 59(6): 56-59.
[3] 杨素霞, 沈文卓. 基于智能复合镀膜设备的控制系统设计*[J]. 真空, 2022, 59(1): 68-73.
[4] 王逊. 真空测量技术及航天应用[J]. 真空, 2021, 58(1): 15-18.
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15-18.
[6] 孙冬花, 陈联, 赵澜, 张瑞芳, 丁栋, 张瑞年. 小型半密封器件腔体压力变化测量方法研究[J]. 真空, 2019, 56(4): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .