欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (6): 22-31.doi: 10.13385/j.cnki.vacuum.2023.06.04

• 薄膜 • 上一篇    下一篇

类金刚石薄膜抗腐蚀疲劳性能的研究进展*

李国浩, 万亿, 张昕洁, 杜广煜   

  1. 东北大学 机械工程与自动化学院 真空与流体工程研究所,辽宁 沈阳 110819
  • 收稿日期:2023-03-15 出版日期:2023-11-25 发布日期:2023-11-27
  • 通讯作者: 杜广煜,副教授。
  • 作者简介:李国浩(1992-),男,辽宁省沈阳市人,博士生。
  • 基金资助:
    *国家重点研发计划课题(2020YFB2007804)

Research Progress on Corrosion Fatigue Resistance of Diamond-like Carbon Films

LI Guo-hao, WAN Yi, ZHANG Xin-jie, DU Guang-yu   

  1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2023-03-15 Online:2023-11-25 Published:2023-11-27

摘要: 类金刚石(DLC)薄膜是一种具有高耐磨性和高化学稳定性的薄膜材料,应用也越来越广泛。随着关键材料部件的服役环境越来越苛刻,关键部件的防护和可靠性面临新的挑战,近年来DLC的抗腐蚀性能越来越被重视。本文聚焦DLC的腐蚀和耐磨机理,归纳了DLC薄膜对合金表面腐蚀防护的研究热点,介绍了应用在材料表面的DLC不同制备方法,简述了单层DLC、多层DLC和掺杂型DLC的结构和防护机理。多层DLC具有很大的研究价值和广泛的应用前景。最后,对当前DLC薄膜对基材表面防护的发展趋势和挑战进行了展望。

关键词: 类金刚石薄膜, 腐蚀疲劳, 掺杂, 多层结构, 杂化键

Abstract: Diamond-like carbon(DLC) film is a kind of film material with high wear resistance and high chemical stability,so it is more and more widely used. With the increasingly harsh service environment of key material components,the protection and reliability of key components are facing new challenges. In recent years,more and more attention has been paid to the corrosion resistance of DLC. This paper focuses on the corrosion and wear resistance mechanism of DLC,and summarizes the research focus of the corrosion resistance of DLC film on alloy surface. Different preparation methods of DLC applied on material surface are introduced. The structure and protection mechanism of single-layer DLC,multi-layer DLC and doped DLC are briefly described. Multilayer DLC has great research value and broad application prospects. Finally,the development trend and challenges of DLC film for substrate surface protection are prospected.

Key words: diamond-like carbon film, corrosion fatigue, doping, multilayered structure, hybrid bond

中图分类号:  TG174.444

[1] CHEN G S, WAN K C, GAO M, et al.Transition from pitting to fatigue crack growth-modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy[J]. Materials Science and Engineering: A, 1996, 219(1/2): 126-132.
[2] BHUIYAN M S, MUTOH Y, MURAL T, et al.Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments[J]. International Journal of Fatigue, 2008, 30(10/11): 1756-1765.
[3] SURESH S, ZAMISKI G F, RITCHIE D R O. Oxide-induced crack closure:an explanation for near-threshold corrosion fatigue crack growth behavior[J]. Metallurgical and Materials Transactions A, 1981, 12(8): 1435-1443.
[4] OKAZAKI Y, ITO Y, KYO K, et al.Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al[J]. Materials Science and Engineering: A, 1996, 213(1/2): 138-147.
[5] OKAZAKI Y, RAO S, ITO Y, et al.Corrosion resistance,mechanical properties,corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V[J]. Biomaterials, 1998, 19(13): 1197-1215.
[6] SONSINO C M.Consideration of salt-corrosion fatigue for lightweight design and proof of aluminium safety components in vehicle applications[J]. International Journal of Fatigue, 2022, 154: 106406.
[7] 李斌, 董丽虹, 王海斗, 等. 航空航天铝合金腐蚀疲劳研究进展[J]. 表面技术, 2021, 50(7): 106-118.
[8] DALIBON E L, ESCALADA L, SIMISON S, et al.Mechanical and corrosion behavior of thick and soft DLC coatings[J]. Surface and Coatings Technology, 2017, 312: 101-109.
[9] ERDEMIR A, DONNET C.Tribology of diamond-like carbon films: recent progress and future prospects[J]. Journal of Physics D: Applied Physics, 2006, 39(18): 311-327.
[10] 凌晓, 俞树荣, 张俊彦. 沉积气压对类金刚石薄膜结构和性能的影响[J]. 红外与激光工程, 2014, 43(6): 1878-1882.
[11] 任伟, 李文生, 马勤, 等. 镍基涂层/碳基薄膜复合体系磨蚀行为[J]. 稀有金属材料与工程, 2020, 49(4): 1379-1387.
[12] LU Y, HUANG G, WANG S, et al.A review on diamond-like carbon films grown by pulsed laser deposition[J]. Applied Surface Science, 2021, 541: 148573.
[13] 毕君, 彭继华, 李烈军, 等. 工作气体对含氢DLC涂层热稳定性及力学性能的影响[J]. 材料保护, 2021, 54(6): 16-21.
[14] PISARIK P, JELINNEK M, REMSA J, et al.Antibacterial, mechanical and surface properties of Ag-DLC films prepared by dual PLD for medical applications[J]. Materials Science and Engineering: C, 2017, 77: 955-962.
[15] 曹红帅. 活塞用铝合金表面钛掺杂类金刚石膜的制备及其结构性能研究[D]. 长沙: 湘潭大学, 2019.
[16] 赵凤平, 李淑欣, 蒲吉斌, 等. 马氏体钢表面磁控溅射类金刚石薄膜滚动接触疲劳失效机理[J]. 摩擦学学报, 2021, 42(1): 153-162.
[17] 季鑫, 宓一鸣, 周细应. TiN薄膜制备方法、性能及其应用的研究进展[J]. 热加工工艺, 2009, 38(4): 81-84.
[18] KOPUSTINSKAS V, MESKINIS S, TAMULEVICIUS S, et al.Direct ion beam deposited carbon films and clusters[J]. Vacuum, 2003, 72(2): 193-198.
[19] ROBERTSON J.Diamond-like amorphous carbon[J]. Materials Science and Engineering: R, 2002, 37(4-6): 129-281.
[20] WANG Z, WANG C B, WANG Q, et al.Electrochemical corrosion behaviors of a-C∶H and a-C∶NX∶H films[J]. Applied Surface Science, 2008, 254(10): 3021-3025.
[21] DALIBON E L, MOREIRA R D, GUITAR M A, et al.Influence of the substrate pre-treatment on the mechanical and corrosion response of multilayer DLC coatings[J]. Diamond and Related Materials, 2021, 118: 108507.
[22] LIFSHITZ Y.Diamond-like carbon-present status[J]. Diamond and Related Materials, 1999, 8(8/9): 1659-1676.
[23] LIBASSI A, FERRARI A C, STOLOJAN V, et al.Density, sp3 content and internal layering of DLC films by X-ray reflectivity and electron energy loss spectroscopy[J]. Diamond and Related Materials, 2000, 9(3-6): 771-776.
[24] ROBERTSON J.Deposition mechanisms for promoting sp3 bonding in diamond-like carbon[J]. Diamond and Related Materials, 1993, 2(5-7): 984-989.
[25] CHEN Y, NIE X Y, LEYLAND A, et al.Substrate and bonding layer effects on performance of DLC and TiN biomedical coatings in Hank's solution under cyclic impact-sliding loads[J]. Surface and Coatings Technology, 2013, 237: 219-229.
[26] MARCIANO F R, ALMEIDA E C, LIMA D A, et al.Crystalline diamond particles into diamond-like carbon films: the influence of the particle sizes on the electrochemical corrosion resistance[J]. Surface and Coatings Technology, 2010, 204(16/17): 2600-2604.
[27] ERDEMIR A. The role of hydrogen in tribological properties of diamond-like carbon films[J]. Surface and Coatings Technology, 2001, 146/147: 292-297.
[28] KIM H I, LINCE J R, ERYILMAZ O L, et al.Environmental effects on the friction of hydrogenated DLC films[J]. Tribology Letters, 2006, 21(1): 53-58.
[29] 崔龙辰, 余伟杰. 类金刚石碳薄膜的高温摩擦学研究进展[J]. 表面技术, 2019, 48(12): 150-159.
[30] HUANG P, QI W, YIN X, et al.Ultra-low friction of a-C∶H films enabled by lubrication of nanodiamond and graphene in ambient air[J]. Carbon, 2019, 154: 203-210.
[31] SOHBATZADEH F, ESHGHABADI M, MOHSENPOUR T.Controllable synthesizing DLC nano structures as a super hydrophobic layer on cotton fabric using a low-cost ethanol electrospray-assisted atmospheric plasma jet[J]. Nanotechnology, 2018, 29(26): 265603.
[32] SOHBATZADEH F, SHAKERINASAB E, ESHGHABADI M, et al.Characterization and performance of coupled atmospheric pressure argon plasma jet with n-hexane electrospray for hydrophobic layer coatings on cotton textile[J]. Diamond and Related Materials, 2019, 91: 34-45.
[33] SIOW K S.Low pressure plasma modifications for the generation of hydrophobic coatings for biomaterials applications[J]. Plasma Processes and Polymers, 2018, 15(9): 1800059.
[34] WANG J, ZHANG K, WANG F G, et al.Improving frictional properties of DLC films by surface energy manipulation[J]. RSC Advances, 2018, 8(21): 11388-11394.
[35] RYU H, KIM J, KIM J, et al.Enhancement of a heat transfer performance on the Al6061 surface using microstructures and fluorine-doped diamond-like carbon(F-DLC)coating[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119108.
[36] HUANG G F, ZHOU L P, HUANG W Q, et al.The mechanical performance and anti-corrosion behavior of diamond-like carbon film[J]. Diamond and Related Materials, 2003, 12(8): 1406-1410.
[37] WANG L, SU J F, NIE X.Corrosion and tribological properties and impact fatigue behaviors of TiN-and DLC-coated stainless steels in a simulated body fluid environment[J]. Surface and Coatings Technology, 2010, 205(5): 1599-1605.
[38] HAUERT R, THORWARTH K, THORWARTH G.An overview on diamond-like carbon coatings in medical applications[J]. Surface and Coatings Technology, 2013, 233: 119-130.
[39] ROY R K, LEE K R.Biomedical applications of diamond-like carbon coatings: a review[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 83(1): 72-84.
[40] DALIBON E L, MOREIRA R D, HEIM D, et al.Soft and thick DLC deposited on AISI 316L stainless steel with nitriding as pre-treatment tested in severe wear conditions[J]. Diamond and Related Materials, 2020, 106: 107881.
[41] ZHANG T F, DENG Q Y, LIU B, et al.Wear and corrosion properties of diamond like carbon (DLC) coating on stainless steel, CoCrMo and Ti6Al4V substrates[J]. Surface and Coatings Technology, 2015, 273: 12-19.
[42] YAMAUCHI N, DEMIZU K, UEDA N, et al.Friction and wear of DLC films on magnesium alloy[J]. Surface and Coatings Technology, 2005, 193(1-3): 277-282.
[43] MARIN E, LANZUTTI A, NAKAMURA M, et al.Corrosion and scratch resistance of DLC coatings applied on chromium molybdenum steel[J]. Surface and Coatings Technology, 2019, 378: 124944.
[44] MORRISON M L, BUCHANAN R A, LIAW P K, et al.Electrochemical and antimicrobial properties of diamondlike carbon-metal composite films[J]. Diamond and Related Materials, 2006, 15(1): 138-146.
[45] WEI Q, NARAYAN R J, NARAYAN J, et al.Improvement of wear resistance of pulsed laser deposited diamond-like carbon films through incorporation of metals[J]. Materials Science and Engineering: B, 1998, 53(3): 262-266.
[46] PAUL R, BHAR R, PAL A K.Field emission properties of composite nano-Au/DLC films prepared by CVD technique[J]. Materials Research Bulletin, 2010, 45(5): 576-583.
[47] WU H, XIAO S, CHEN D L, et al.Effects of diamond-like carbon film on the corrosion behavior of NdFeB permanent magnet[J]. Surface and Coatings Technology, 2017, 312: 66-74.
[48] PRAWER S, NUGENT K W, LIFSHITZ Y, et al.Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition[J]. Diamond and Related Materials, 1996, 5(3-5): 433-438.
[49] OLIVEIRA C A G S, STEIN M F, SAITO E, et al. Effect of gold oxide incorporation on electrochemical corrosion resistance of diamond-like carbon[J]. Diamond and Related Materials, 2015, 53: 40-44.
[50] MAZARE A, ANGHEL A, SURDUBOB C, et al.Silver doped diamond-like carbon antibacterial and corrosion resistance coatings on titanium[J]. Thin Solid Films, 2018, 657: 16-23.
[51] HOGSTROM J, ANDERSSON M, JANSSON U, et al.On the evaluation of corrosion resistances of amorphous chromium-carbon thin-films[J]. Electrochimica Acta, 2014, 122: 224-233.
[52] VOEVODIN A A, CAPANO M A, LAUBE S, et al.Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti-C thin films[J]. Thin Solid Films, 1997, 298(1/2): 107-115.
[53] BAYON R, IGARTUA A, GONZAIEZ J J, et al.Influence of the carbon content on the corrosion and tribocorrosion performance of Ti-DLC coatings for biomedical alloys[J]. Tribology International, 2015, 88: 115-125.
[54] XU X W, ZHOU Y, LIU L L, et al.Corrosion behavior of diamond-like carbon film induced by Al/Ti co-doping[J]. Applied Surface Science, 2020, 509: 144877.
[55] AZZI M, AMIRAULT P, PAQUETTE M, et al.Corrosion performance and mechanical stability of 316L/DLC coating system: role of interlayers[J]. Surface and Coatings Technology, 2010, 204(24): 3986-3994.
[56] KIM H G, AHN S H, KIM J G, et al.Corrosion performance of diamond-like carbon(DLC)-coated Ti alloy in the simulated body fluid environment[J]. Diamond and Related Materials, 2005, 14(1): 35-41.
[57] 谢明玲, 杨皎, 张广安, 等. Si-DLC薄膜在硝酸介质中的腐蚀磨损行为与机理[J]. 摩擦学学报, 2017, 37(4): 510-517.
[58] CHOI J, NAKAO S, KIM J, et al.Corrosion protection of DLC coatings on magnesium alloy[J]. Diamond and Related Materials, 2007, 16(4-7): 1361-1364.
[59] TORO R G, CALANDRA P, CORTESE B, et al.Argon and hydrogen plasma influence on the protective properties of diamond-like carbon films as barrier coating[J]. Surfaces and Interfaces, 2017, 6: 60-71.
[60] YU G Q, TAY B K, SUN Z, et al.Properties of fluorinated amorphous diamond like carbon films by PECVD[J]. Applied Surface Science, 2003, 219(3/4): 228-237.
[61] MARCIANO F R, ALMEIDA E C, LIMA-OLIVEIRA D A, et al. Improvement of DLC electrochemical corrosion resistance by addiction of fluorine[J]. Diamond and Related Materials, 2010, 19(5/6): 537-540.
[62] KHUN N W, LIU E, ZENG X T.Corrosion behavior of nitrogen doped diamond-like carbon thin films in NaCl solutions[J]. Corrosion Science, 2009, 51(9): 2158-2164.
[63] 刘健, 曹磊, 万勇, 等. 硼掺杂DLC薄膜在海水环境中的腐蚀磨损性能[J]. 表面技术, 2019, 48(8): 247-256.
[64] WEI J, LI H C, LIU L L, et al.Enhanced tribological and corrosion properties of multilayer ta-C films via alternating sp3 content[J]. Surface and Coatings Technology, 2019, 374: 317-326.
[65] YE Y W, WANG Y X, MA X L, et al.Tribocorrosion behaviors of multilayer PVD DLC coated 304L stainless steel in seawater[J]. Diamond and Related Materials, 2017, 79: 70-78.
[66] CUI M J, PU J B, LIANG J, et al.Corrosion and tribocorrosion performance of multilayer diamond-like carbon film in NaCl solution[J]. RSC Advances, 2015, 5(127): 104829-104840.
[67] XU Z, SUN H, LENG Y X, et al.Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method[J]. Applied Surface Science, 2015, 328: 319-324.
[68] WU G S, SUN L L, DAI W, et al.Influence of interlayers on corrosion resistance of diamond-like carbon coating on magnesium alloy[J]. Surface and Coatings Technology, 2010, 204(14): 2193-2196.
[69] BOUZAKIS K D, MAKRIMALLAKIS S, KATIRTZOGLOU G, et al.Adaption of graded Cr/CrN-interlayer thickness to cemented carbide substrates' roughness for improving the adhesion of HPPMS PVD films and the cutting performance[J]. Surface and Coatings Technology, 2010, 205(5): 1564-1570.
[70] LIU L L, WU Z Z, AN X K, et al.Excellent adhered thick diamond-like carbon coatings by optimizing hetero-interfaces with sequential highly energetic Cr and C ion treatment[J]. Journal of Alloys and Compounds, 2018, 735: 155-162.
[1] 张晓霞, 邓金祥, 孔乐, 李瑞东, 杨子淑, 张杰. 不同浓度的Si掺杂β-Ga2O3薄膜的制备及研究*[J]. 真空, 2021, 58(5): 57-61.
[2] 杨子淑, 段苹, 邓金祥, 张晓霞, 张杰, 杨倩倩. 不同浓度的Mg掺杂β-Ga2O3薄膜的制备与研究*[J]. 真空, 2021, 58(3): 30-34.
[3] 张玉琛, 张海宝, 陈强. 高功率脉冲磁控溅射制备ZnO薄膜的研究进展*[J]. 真空, 2021, 58(1): 72-77.
[4] 戴永喜, 杨倩倩, 邓金祥, 孔乐, 刘红梅, 杨凯华, 王吉有. 不同Si含量掺杂的ZTO薄膜的制备与研究[J]. 真空, 2020, 57(6): 23-26.
[5] 张爽, 董闯, 马艳平, 丁万昱. 薄膜的材料特征*[J]. 真空, 2020, 57(4): 11-18.
[6] 李如永, 段苹, 崔敏, 王吉有, 原安娟, 邓金祥. 后退火对射频磁控溅射法制备Mg掺杂Ga2O3薄膜性质的影响[J]. 真空, 2019, 56(3): 37-40.
[7] 王晓然, 马艳彬, 段 苹, 李如永, 庄碧辉, 崔 敏, 原安娟, 邓金祥. Mg 掺杂浓度对射频磁控溅射制备 Ga2O3 薄膜性质的影响[J]. 真空, 2018, 55(6): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .