欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (4): 85-91.doi: 10.13385/j.cnki.vacuum.2024.04.16

• 真空应用 • 上一篇    下一篇

真空技术在先进陶瓷制备中的应用*

刘诗梦1,2, 赵环宇3, 王杰1, 乔忠路1,2, 晋伟达1,2, 张仁柱1,2   

  1. 1.沈阳真空技术研究所有限公司,辽宁 沈阳 110042;
    2.沈阳汇真真空技术有限公司,辽宁 沈阳 110042;
    3.沈阳化工大学材料科学与工程学院,辽宁 沈阳 110142
  • 收稿日期:2024-05-09 出版日期:2024-07-25 发布日期:2024-07-29
  • 作者简介:刘诗梦(1994-),女,辽宁省锦州市人,硕士,助理工程师。
  • 基金资助:
    * 辽宁省自然科学基金联合基金资助项目(2023-BSBA-271)

Application of Vacuum Technology in Advanced Ceramic Preparation

LIU Shi-meng1,2, ZHAO Huan-yu3, WANG Jie1, QIAO Zhong-lu1,2, JIN Wei-da1,2, ZHANG Ren-zhu1,2   

  1. 1. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China;
    2. Shenyang Huizhen Vacuum Technology Co., Ltd., Shenyang 110042, China;
    3. School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
  • Received:2024-05-09 Online:2024-07-25 Published:2024-07-29

摘要: 先进陶瓷材料具有高硬度、高模量、耐高温、耐腐蚀等结构特性以及优异的热学、光学和电学等功能特性,因此在航天航空、信息技术、国防军工、生物医疗与新能源等领域得到越来越多的应用。高性能先进陶瓷材料需求的增加推动了制备工艺的发展,在陶瓷成型与烧结技术中引入真空技术可以通过改善陶瓷致密度、成分均匀性与晶粒尺寸分布等因素促进其性能的提升。本文着重对真空技术在不同成型与烧结方法中的应用进行了分析归纳,探讨了不同制备方法的特征及真空气氛对于陶瓷性能提升的作用机理,最后对未来的研究方向进行了展望。

关键词: 先进陶瓷, 真空技术, 成型, 烧结

Abstract: Advanced ceramic materials have unparalleled structural characteristics such as high hardness, high modulus, high temperature resistance, corrosion resistance, as well as excellent functional properties such as thermal, optical and electrical properties. Therefore, they have been increasingly applied in fields of aerospace, information technology, national defense and military industry, biomedicine, and new energy. The demand for high performance advanced ceramic materials has driven the development of preparation processes. The application of vacuum technology in ceramic forming and sintering technology can improve ceramic properties by influencing on the densification, the uniformity of composition, and the distribution of grain sizes. This study summarized the application of vacuum technology in various forming and sintering methods, and discussed the mechanism of the effects of vacuum atmosphere on improving ceramic properties. Finally, prospects are made for future research directions.

Key words: advanced ceramic, vacuum technology, forming, sintering

中图分类号:  TB32

[1] 谢志鹏, 李辰冉, 安迪, 等. 国际先进结构陶瓷研发及产业化应用发展状况[J]. 陶瓷学报, 2019, 40(4): 425-433.
[2] 翁世雯, 袁新林. 先进陶瓷材料在工业产品中的应用[J]. 2023, 12: 72-73.
[3] 工业和信息化部. 三部委关于印发“十四五”原材料工业发展规划的通知:工信部联规〔2021〕212号[EB/OL].(2021-12-21)[2024-05-05]. https://www.gov.cn/zhengce/zhengceku/2021-12/29/content_5665166.htm.
[4] 齐龙浩, 姜忠良. 精细陶瓷工艺学[M]. 北京:清华大学出版社, 2021: 148-211.
[5] 吕耀辉. Nd:YAG纳米粉体微结构调控及胶体化学性能研究[D]. 济南:山东大学, 2010.
[6] LYU Y H, ZHANG W, TAN J, et al.Dispersion of concentrated aqueous neodymia-yttria-alumina mixture with ammonium poly(acrylic acid) as dispersant[J]. Journal of Alloys and Compounds, 2011, 509(6): 3122-3127.
[7] LYU Y H, ZHANG W, LIU H, et al.Synthesis of nano-sized and highly sinterable Nd:YAG powders by the urea homogeneous precipitation method[J]. Powder Technology, 2012, 217: 140-147.
[8] 刘长霞. Al2O3基大型结构陶瓷导轨材料及其摩擦磨损性能研究[D]. 济南:山东大学, 2007.
[9] 吕子彬,海韵,吕金玉,等.陶瓷基片流延成型用浆料研究进展[J]. 武汉理工大学学报, 2021, 43(6): 7-14.
[10] 张海波, 谭划, 姜胜林. 先进陶瓷工艺学[M]. 武汉:华中科技大学出版社, 2023: 59-75.
[11] CHEN X Q, WU Y Q.Aqueous-based tape casting of multilayer transparent Nd:YAG ceramics[J]. Optical Materials, 2019, 89: 316-321.
[12] 赵前程, 江国健.水基流延成型制备LED用YAG:Ce荧光陶瓷薄膜及其性能[J]. 硅酸盐学报, 2018, 46(7): 987-993.
[13] 徐晗. 氮化硅结合碳化硅材料凝胶注模成型工艺研究[D]. 郑州:郑州大学, 2019.
[14] QIN X P, ZHOU G H, YANG Y, et al.Gelcasting of transparent YAG ceramics by a new gelling system[J]. Ceramics International, 2014, 40(8): 12745-12750.
[15] YAO Q, ZHANG L, CHEN H, et al.A novel gelcasting induction method for YAG transparent ceramic[J]. Ceramics International, 2021, 47(3): 4327-4332.
[16] 郑喜贵, 王桂录, 邵晨阳, 等. 激光/荧光陶瓷成型技术的研究进展[J]. 化学通报, 2024, 87(3): 290-299.
[17] GERMAN M R.Sintering: from empirical observations to scientific principles[M]. Waltham: Elsevier Butterworth Heinemann Inc., 2014: 116-148.
[18] RAHAMAN M N.Sintering of ceramics[M]. New York: CRC Press Inc., 2007: 1-45.
[19] 桑元华, 刘宏, 秦海明, 等. ND:YAG透明激光陶瓷的研究进展及相关问题[J].功能材料, 2011, 42(增刊2):212-217.
[20] CHEN L, MA Z Z, CHEN J, et al.MgF2-doped MgO-YAG:Ce composite ceramics prepared by pressureless vacuum sintering for laser-driven lighting[J]. Journal of Luminescence, 2024, 266: 120301.
[21] LIN Y Q, HUANG J Q, XIAO H, et al.Eu3+ doped (Y0.75Sc0.25)2O3 red-emitting ceramics with excellent photoluminescence properties for LEDs[J]. Journal of Luminescence, 2024, 269: 120489.
[22] WANG Y B, HUANG X Y, CHENG Z Q, et al.Fabrication and luminescence properties of Al2O3-Ce:LuAG composite phosphor ceramics for solid-state laser lighting[J]. Optical Materials, 2024, 147: 114628.
[23] IKESUE A, KINOSHITA T, KAMATA K, et al.Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-statelasers[J]. Journal of the American Ceramic Society, 1995, 78(4): 1033-1040.
[24] SONG Y H, JI E K, JEONG B W, et al.Design of laser-driven high-efficiency Al2O3/YAG:Ce3+ ceramic converter for automotive lighting: Fabrication, luminous emittance, and tunable color space[J]. Dyes and Pigments, 2017, 139: 688-692.
[25] HUANG P, ZHOU B Y, ZHENG Q,et al.Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG: Ce composite ceramics for high luminous efficiency white light-emitting diodes[J].Advanced Materials, 2019, 32(1).1905951
[26] 庞淇瑞, 李淑星, 解荣军. 激光照明用荧光陶瓷研究进展[J]. 硅酸盐学报, 2024, 52(3): 906-923.
[27] CAI K F, MÜLLER E, DRAŠAR C, et al. Preparation and thermoelectric properties of Al-doped ZnO ceramics[J]. Materials Science and Engineering: B, 2003, 104(1/2): 45-48.
[28] CHEN M, HE J, ZHANG Y, et al.Densification and grain growth behaviour of high-purity MgO ceramics by hot-pressing[J]. Ceramics International, 2017, 43(2): 1775-1780.
[29] PANG Q, LIU W, SHEN J, et al.Improved optical properties of BN powder shielded Ce:YAG ceramics prepared by hot pressing[J]. Ceramics International, 2022, 48(16): 23821-23827.
[30] 韩翠柳, 沈学峰, 王衍, 等. 放电等离子烧结新技术新材料研究现状与发展趋势[J]. 航空制造技术, 2019, 62(22): 43-51.
[31] 张启龙, 杨辉. 功能陶瓷材料与器件/中国战略性新兴产业[M]. 北京:中国铁道出版社. 2017: 49.
[32] ZHANG Y F, SONG A J, MA D Q, et al.Sintering characteristics and grain growth behavior of MgO nanopowders by spark plasma sintering[J]. Journal of Alloys and Compounds, 2014, 608: 304-310.
[33] GHANIZADEH S, GRASSO S, RAMANUJAM P, et al.Improved transparency and hardness in α-alumina ceramics fabricated by high-pressure SPS of nanopowders[J]. Ceramics International, 2017, 43(1): 275-281.
[34] XIE J X, MAO X J, LI X 看, et al. Influence of moisture absorption on the synthesis and properties of Y2O3-MgO nanocomposites[J]. Ceramics International, 2017, 43(1): 40-44.
[35] KRUK A.Fabrication of MgO high transparent ceramics by arc plasma synthesis[J]. Optical Materials, 2018, 84: 360-366.
[36] LU N, HE G, YANG Z C, et al.Fabrication and densification mechanism of MgO/Graphene composites with LiF as additive[J]. Scripta Materialia, 2020, 174: 91-94.
[37] PENG Z J, LUO X D, XIE Z P, et al.Sintering behavior and mechanical properties of spark plasma sintering SiO2-MgO ceramics[J]. Ceramics International, 2020, 46(3): 2585-2591.
[38] KOSYANOV D Y, VORNOVSKIKH A A, SHICHALIN O O, et al.Reactive SPS of Al2O3-RE:YAG (RE = Ce; Ce+Gd) composite ceramic phosphors[J]. Journal of Advanced Ceramics, 2023, 12(5): 1015-1032.
[39] 颜邓伊, 许文举, 吉利, 等.高熵陶瓷材料的研究进展[J]. 材料保护, 2023, 56(8): 35-49.
[40] CASTLE E, CSANÁDI T, GRASSO S, et al. Processing and properties of high-entropy ultra-high temperature carbides[J]. Scientific Reports, 2018, 8:8609.
[41] ZHOU J, ZHANG J Y, ZHANG F Y, et al.High-entropy carbide: a novel class of multicomponent ceramics[J]. Ceramics International, 2018, 44(17): 22014-22018.
[42] WANG Z, LI Z T, ZHAO S J, et al.High-entropy carbide ceramics: a perspective review[J]. Tungsten, 2021, 3: 131-142.
[1] 胡浩, 李凯, 刘洪涛, 邵晴, 韩田, 于淼, 刘航, 李昊宸. 真空技术在高温超导电动磁浮交通系统中的应用*[J]. 真空, 2024, 61(3): 105-109.
[2] 类承帅, 陈国鑫, 陆星宇, 周丽娜, 黄菊, 刘宏伟. 真空技术在高品质钢制备中的应用与发展*[J]. 真空, 2023, 60(2): 14-19.
[3] 赵建业, 付秀华. 基于西门子S7通讯的小型PLC网络在手套箱-烧结炉集群控制系统的应用[J]. 真空, 2023, 60(1): 80-85.
[4] 刘燕文, 孟鸣凤, 张晓林, 朱虹, 王国建, 赵恒邦, 王小霞, 张志强. 熔融热子组件的制备*[J]. 真空, 2022, 59(4): 76-79.
[5] 戴晨, 南海娟, 盛小洋, 丛轮刚, 李彩霞. 金属多孔材料真空烧结炉控制系统设计改造*[J]. 真空, 2021, 58(4): 63-66.
[6] 鄂东梅. 真空技术在航空航天中的应用[J]. 真空, 2021, 58(3): 77-81.
[7] 吴爱荣, 张峰, 马强, 席晓晶. 多室隧道连续式真空烧结炉及热处理炉控制系统的设计*[J]. 真空, 2021, 58(1): 78-81.
[8] 李雪峰, 马强, 李晓明, 王智荣, 吴爱荣, 刘成. 真空脱蜡烧结炉中差压式载气脱蜡原理的应用*[J]. 真空, 2020, 57(4): 32-35.
[9] 田同同, 李论, 周波, 赵吉宾. 彩色3D打印分层切片技术研究*[J]. 真空, 2019, 56(6): 75-79.
[10] 王智荣, 马强, 龙国梁, 李雪峰, 刘成. 多室隧道连续式真空烧结炉及热处理炉的研制与应用*[J]. 真空, 2019, 56(5): 6-11.
[11] 段永利, 邓文宇, 齐丽君, 刘 坤, 孙宝玉, 王 庆. 金属 Tb 晶界扩散对烧结钕铁硼磁性和耐温性的影响[J]. 真空, 2018, 55(6): 76-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .