真空 ›› 2024, Vol. 61 ›› Issue (5): 80-89.doi: 10.13385/j.cnki.vacuum.2024.05.11
田立成, 王尚民, 陈昶文
TIAN Li-cheng, WANG Shang-min, CHEN Chang-wen
摘要: 基于光谱卫星任务需求,兰州空间技术物理研究所开展了脉冲等离子体微电推进系统方案设计,以此完成25W级脉冲等离子体电推进系统飞行样机研制,并开展了地面各项测试,均满足需求。为了进一步验证该系统的空间环境适应性、与航天器的相互兼容性、空间工作特性及空间飞行性能与地面数据的差异性,LPPT-25微电推进系统搭载长光卫星公司光谱星一号(GP-1)卫星开展了在轨飞行试验,对脉冲等离子体电推进系统在轨飞行试验结果进行了评价。结果表明:在整个飞行试验期间,脉冲等离子体电推进系统各项工作性能参数符合设计指标要求,电推进分系统工作正常,推力输出稳定,各遥测温度满足推进要求的控温范围;电推进推力标定为306.3 μN,相比地面测试推力300 μN,偏差在5%以内,体现了良好的天地一致性。
中图分类号: V439+.2
[1] LAU M, MANNA S, HERDRICH G, et al.Investigation of the plasma current density of a pulsed plasma thruster[J]. Journal of Propulsion and Power, 2014, 30(6): 1459-1470. [2] 王尚民, 张家良, 张天平, 等. μ-PPT等离子体电子密度氢光谱诊断技术[J]. 中国空间科学技术, 2016, 36(1): 94-102. [3] KRONHAUS I, SCHILLING K, JAYAKUMAR V, et al.Design of the UWE-4 picosatellite orbit control system using vacuum-arc-thrusters[C]// 33rd International Electric Propulsion Conference. Washington, DC: IEPC, 2013. [4] WRIGHT W P, FERRER P.Electric micropropulsion systems[J]. Progress in Aerospace Sciences, 2015, 74: 48-61. [5] 尹乐, 周进, 缪万波, 等. 脉冲等离子体推力器放电波形设计评估仿真研究[J]. 推进技术, 2010, 31(4): 490-495. [6] WU Z W, SUN G R, YUAN S Y, et al.Discharge reliability in ablative pulsed plasma thrusters[J]. Acta Astronautica, 2017, 137:8-14. [7] 程笑岩, 刘向阳, 黄启陶, 等. 舌形张角型脉冲等离子体推力器极板结构参数影响仿真研究[J]. 深空探测学报, 2017, 4(3): 225-231. [8] YANG L, ZENG G S, TANG H B, et al.Numerical studies of wall-plasma interactions and ionization phenomena in an ablative pulsed plasma thruster[J]. Physics of Plasmas, 2016, 23:073518. [9] 田立成, 王小永, 张天平. 空间电推进应用及技术发展趋势[J]. 火箭推进, 2015, 41(3): 7-14. [10] 田立成, 王尚民, 高俊, 等.微电推进系统研制及应用现状[J]. 真空, 2021, 58(2): 66-75. [11] 王尚民, 田立成, 张家良, 等. 微脉冲等离子体推力器放电过程和性能初探[J]. 中国空间科学技术, 2017, 37(5): 24-32. [12] WHITE D, SCHILLING J H, BUSHMAN S, et al.AFRL micro PPT development for small spacecraft propulsion[C]// 33rd Plasmadynamics and Lasers Conference. Maui, Hawaii: AIAA, 2002. [13] RAYBURN C D, CAMPBELL M E, MATTICK A T.Pulsed plasma thruster system for microsatellites[J]. Journal of Spacecraft and Rockets, 2005, 42(1): 161-170. [14] EGAMI N, MATSUOKA T, SAKAMOTO M, et al.R&D, launch and initial operation of the Osaka institute of technology 1st PROITERES nano-satellite with electrothermal pulsed plasma thrusters and development of the 2nd satellite[C]// 33rd International Electric Propulsion Conference. Washington, DC: IEPC, 2013. [15] CIARALLI S, COLETTI M, GABRIEL S B.Results of the qualification test campaign of a pulsed plasma thruster for Cubesat propulsion(PPTCUP)[J]. Acta Astronautica. 2016, 121:314-322 [16] CIARALLI S, COLETTI M, GABRIEL S B.Performance and lifetime testing of a pulsed plasma thruster for Cubesat applications[J]. Aerospace Science and Technology, 2015, 47: 291-298. [17] KREJCI D, SEIFERT B, SCHARLEMANN C.Endurance testing of a pulsed plasma thruster for nanosatellites[J]. Acta Astronautica, 2013, 91: 187-193. [18] 田立成, 赵成仁, 张天平, 等. SJ-17卫星LHT-100霍尔电推进系统飞行试验工作性能评价[J]. 推进技术,2017, 38(11): 2411-2421. [19] GESSINI P, PACCANI G.Ablative pulsed plasma thruster system optimization for microsatellites[C]//27th International Electric Propulsion Conference. Pasadena, CA:IEPC, 2001. [20] WANG S M, TIAN L C, FENG W W, et al.μ-PPT electro-propulsion system development and first fight application[C]//35th International Electric Propulsion Conference. Atlanta, Georgia, USA: IEPC, 2017. [21] PALUMBO D J, BEGUN M.Plasma acceleration in pulsed ablative arc discharge [R/OL]. [1975-03-01].https://www.osti.gov/biblio/7357948. [22] VONDRA R J, THOMASSON K I.Performance improvements in solid fuel microthrusters[J]. Joumal of Spacecraft. 1972, 9(10): 738-742. |
[1] | 田立成, 王尚民, 高俊, 孟伟, 田恺, 吴辰宸. 微电推进系统研制及应用现状*[J]. 真空, 2021, 58(2): 66-75. |
|