欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2025, Vol. 62 ›› Issue (1): 10-14.doi: 10.13385/j.cnki.vacuum.2025.01.02

• 测量与控制 • 上一篇    下一篇

磁悬浮转子真空计水蒸气校准方法研究*

宋云见1, 习振华1, 李博文2, 张虎忠1, 李刚1, 张开旭1, 李得天1,2   

  1. 1.兰州空间技术物理研究所 真空技术与物理重点实验室,甘肃 兰州 730000;
    2.东北大学 机械工程与自动化学院,辽宁 沈阳 110819
  • 收稿日期:2024-08-23 出版日期:2025-01-25 发布日期:2025-02-10
  • 通讯作者: 李得天,院士。
  • 作者简介:宋云见(2000-),男,陕西宝鸡人,硕士研究生。
  • 基金资助:
    * 国家重点研发计划资助(2023YFF0717202)

Study of Calibration of Spinning Rotor Gauge with Water Vapor

SONG Yunjian1, XI Zhenhua1, LI Bowen2, ZHANG Huzhong1, LI Gang1, ZHANG Kaixu1, LI Detian1,2   

  1. 1. Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China;
    2. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2024-08-23 Online:2025-01-25 Published:2025-02-10

摘要: 磁悬浮转子真空计在高真空范围内具有优异的计量特性,但水蒸气等可凝性气体在测试过程中会在腔室或者转子表面发生显著的吸附或相变,这将引起压力测量值产生偏差,导致磁悬浮转子真空计切向动量传递系数的非线性变化。针对此问题,首先通过对固态冰抽气升华产生平衡稳定的水蒸气前级压力,然后通过绝热膨胀获得标准压力,并分别在常温(23 ℃)和高温(150 ℃)下测试了水蒸气分子在腔室表面的吸附、脱附曲线,计算得到相同压力下对应的吸附量、脱附量,最后对测量值和修正后标准压力之间的偏差进行了分析。测试结果表明:常温(23 ℃)下难以获得精确的标准压力,只能计算关闭阀门后水蒸气分子在腔室及其附属管道壁面的吸附量;高温(150 ℃)下,部分水蒸气分子会吸附在温度小于150 ℃的旁余管道壁面,造成测量压力略小于标准压力。

关键词: 磁悬浮转子真空计, 静态膨胀法, 水蒸气, 吸附

Abstract: Spinning rotor gauge has excellent metrological characteristics in high vacuum. However, condensable gas, such as water vapor, is more likely to absorb or occur phase transition on the chamber or rotor surface. It would lead to the deviation of the measurand, what is more, the nonlinear change of the tangential momentum accommodation coefficient. Pointing at this problem, a balanced and stable pre-stage pressure of water vapor was generated by pumping and sublimating solid ice, and then the standard pressure was obtained by adiabatic expansion. The adsorption and desorption curves of water vapor molecules on the chamber surface were tested at room temperature (23 ℃) and high temperature (150 ℃), respectively. The corresponding adsorption and desorption amounts under the same pressure were calculated. Finally, the deviation between the measured value and the revised standard pressure was analyzed. The determination results show that it is challenging to obtain the accurate standard pressure at 23 ℃. Only the adsorption amount of water vapor molecules on the walls of chamber and its associated pipelines can be calculated after closing the valve. At 150 ℃, some water vapor molecules may adsorb on the walls of adjacent pipelines with temperature lower than 150 ℃, resulting in the measured pressure slightly lower than the standard pressure.

Key words: spinning rotor gauge, static expansion method, water vapor, adsorption

中图分类号:  TB772

[1] 习振华, 郭美如, 李博文, 等. 计量级磁悬浮转子真空计技术研究[J]. 真空与低温, 2022, 28(4): 409-419.
[2] 李得天. 磁悬浮转子规传递系数的变化研究[J]. 真空与低温, 2005,11(3): 139-143.
[3] LI D T, GUO M R, XI Z H, et al.Electromagnetic technology for vacuum metrology in the typical development of a metrological-grade spinning rotor gauge[J]. Electromagnetic Science, 2023, 1(3): 1-12.
[4] SEFA M, SETINA J, ERJAVEC B.Investigation of a method for measurement of water vapor coverage on technical surfaces[J]. Vacuum, 2016, 131: 201-208.
[5] FREMEREY J K.Spinning rotor vacuum gauges[J]. Vacuum, 1982, 32(10/11): 685-690.
[6] FREMEREY J K.The spinning rotor gauge[J]. Journal of Vacuum Science & Technology A, 1985, 3(3): 1715-1720.
[7] FREMEREY J K.Residual drag torque on magnetically suspended rotating spheres[J]. Review of Scientific Instruments, 1972, 43(10): 1413-1417.
[8] 李得天, 田东旭. 磁悬浮转子规的计量学特性[J]. 真空科学与技术, 1999, 19(增刊): 15-18.
[9] CHANG R F, ABBOTT P J.Factors affecting the reproducibility of the accommodation coefficient of the spinning rotor gauge[J]. Journal of Vacuum Science & Technology A, 2007, 25(6): 1567-1576.
[10] FEDCHAK J A, ARAI K, JOUSTEN K, et al.Recommended practices for the use of spinning rotor gauges in inter-laboratory comparisons[J]. Measurement, 2015, 66: 176-183.
[11] BRUNAUER S, EMMETT P H, TELLER E.Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319.
[12] REDHEAD P A.Modeling the pump-down of a reversibly adsorbed phase. I. Monolayer and submonolayer initial coverage[J]. Journal of Vacuum Science & Technology A, 1995, 13(2): 467-475.
[13] REDHEAD P A.Modeling the pump-down of a reversibly adsorbed phase. II. Multilayer coverage[J]. Journal of Vacuum Science & Technology A, 1995, 13: 2791-2796.
[14] REDHEAD P A.An empirical isotherm for multilayer physisorption[J]. Langmuir, 1996, 12(3): 763-767.
[15] LI Y W, CHENG Y J, SUN W J, et al.Study of physisorption isotherm of water on technical nickel surface with a wide pressure range[J]. Vacuum, 2017, 145: 123-127.
[16] LI M X, DYLLA H F.Model for the outgassing of water from metal-surfaces[J]. Journal of Vacuum Science & Technology A, 1993, 11(4): 1702-1707.
[17] LI M X, DYLLA H F.Model for water outgassing from metal-surfaces.Ⅱ[J]. Journal of Vacuum Science & Technology A, 1994, 12(4): 1772-1777.
[18] LI M X, DYLLA H F.Modeling of water outgassing from metal-surfaces(Ⅲ)[J]. Journal of Vacuum Science & Technology A, 1995, 13(4): 1872-1878.
[19] LI D T, CHENG Y J.Applications of non evaporable getter pump in vacuum metrology[J]. Vacuum, 2011, 85(7): 739-743.
[20] 徐婕, 李得天, 郭美如, 等. 静态膨胀法真空标准容积比测量及不确定度评定[J]. 真空与低温, 2008,14(3): 145-148.
[21] SEFA M, SETINA J, ERJAVEC B.Study of water vapor pressure equilibration in a vacuum system[J]. Vacuum, 2013, 98: 3-7.
[1] 任冬雪, 孙小杰, 陈兰兰. 功能性PET复合膜的制备及性能研究*[J]. 真空, 2023, 60(4): 18-23.
[2] 李晓刚, 胡勇, 高峰, 胡湘娥, 甘智华. 低温高真空环境下气体吸附材料吸气性能测试系统设计[J]. 真空, 2023, 60(1): 42-45.
[3] 涂军, 宋文杰, 张斌, 余德平, 李裔红. 水蒸气等离子体发生器工作特性实验研究[J]. 真空, 2021, 58(4): 87-92.
[4] 白彪坤, 陈叔平, 陈联, 金树峰, 史庆智, 孟岳. 液氮温度下分子筛的真空吸附特性试验研究[J]. 真空, 2021, 58(1): 45-50.
[5] 王杰, 康颂, 董长昆. 微型碳纳米管低压传感器工作性能研究[J]. 真空, 2021, 58(1): 1-5.
[6] 孙鲁尧, 陈光奇. 活性炭低温低压吸附等温线试验研究[J]. 真空, 2020, 57(6): 69-74.
[7] 曾环, 邓家良, 孙志和. 250mm口径低温泵设计*[J]. 真空, 2020, 57(2): 13-16.
[8] 李晓峰, 黄强华, 陈光奇, 何晓冬, 朱鸣. 低温绝热气瓶真空寿命模拟试验研究*[J]. 真空, 2020, 57(1): 56-61.
[9] 李晓峰, 陈光奇, 白杨, 任改红. 分子筛在低温低压下的吸附特性试验研究[J]. 真空, 2019, 56(2): 45-49.
[10] 王晓冬, 吴虹阅, 张光利, 李 赫, 孙 浩, 董敬亮, TU Jiyuan. 计算流体力学在真空技术中的应用[J]. 真空, 2018, 55(6): 45-48.
[11] 申付波, 王 杰, 翟 悦, 周志鹏. 轻型低温吸附床壳体的研究与优化设计[J]. 真空, 2018, 55(6): 42-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .