欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2025, Vol. 62 ›› Issue (2): 1-11.doi: 10.13385/j.cnki.vacuum.2025.02.01

• 真空应用 •    下一篇

HEPS储存环真空系统研制*

董海义, 何平, 李琦, 郭迪舟, 王徐建, 马永胜, 刘佰奇, 黄涛, 张磊, 孙飞, 刘天锋, 田丕龙, 杨雨晨, 杨奇, 王鹏程, 刘佳明, 刘顺明, 孙晓阳, 朱邦乐, 谭彪   

  1. 中国科学院高能物理研究所,北京 100049
  • 收稿日期:2024-09-04 出版日期:2025-03-25 发布日期:2025-03-24
  • 作者简介:董海义(1964-),男,山西省大同市人,硕士,研究员。
  • 基金资助:
    * 高能同步辐射光源国家重大科技基础设施项目(发改高技【2017】2173 号)

Research and Development of the HEPS Storage Ring Vacuum System

DONG Haiyi, HE Ping, LI Qi, GUO Dizhou, WANG Xujian, MA Yongsheng, LIU Baiqi, HUANG Tao, ZHANG Lei, SUN Fei, LIU Tianfeng, TIAN Pilong, YANG Yuchen, YANG Qi, WANG Pengcheng, LIU Jiaming, LIU Shunming, SUN Xiaoyang, ZHU Bangle, TAN Biao   

  1. Institute of High Energy Physics, CAS, Beijing 100049, China
  • Received:2024-09-04 Online:2025-03-25 Published:2025-03-24

摘要: 高能同步辐射光源(High Energy Photon Source,HEPS)是束流能量为6 GeV、流强为200 mA的第四代光源。HEPS加速器由直线加速器、增强器、储存环和将这三者连接在一起的三条输运线组成,其中储存环是HEPS的核心部分。本文概述了储存环真空系统的特点,并对一些关键部件的设计和工艺进行了说明。储存环真空系统设计的主要技术难点是研制挤压成型的薄壁铬锆铜真空盒并在其内表面镀吸气剂膜,以解决真空盒上同步辐射光热沉积大和真空盒(内径22 mm)流导受限的问题。目前已完成所有真空部件的生产,储存环真空系统于2023年11月开始正式安装,并于2024年7月完成。通过对真空系统分段在线烘烤和吸气剂膜激活,其平均静态真空达到5×10-8 Pa,优于设计指标。这标志着HEPS储存环真空系统成功实现了从真空盒、RF屏蔽波纹管、光子吸收器等非标设备的设计加工到磁控溅射镀吸气剂膜、现场安装以及吸气剂膜的在线激活等各个技术环节的闭环验证。经历20余天的试运行,HEPS储存环流强达到12 mA,HEPS加速器取得了里程碑式进展。

关键词: 高能同步辐射光源, 真空盒, RF屏蔽波纹管, 光子吸收器, NEG镀膜

Abstract: HEPS (high energy photon source) is the 4th generation ring-based light source with a beam energy of 6 GeV and a beam current intensity of 200 mA. The HEPS accelerator consists of a linac, a booster, a storage ring, and three transport lines connecting them together. The storage ring serves as the core region of HEPS. In this paper, the characteristics of the storage ring vacuum system are reviewed, and the design and fabrication approach for some key vacuum components are detailed. The main challenges include extruding thin-walled CrZrCu vacuum chambers and coating NEG films on their inner surfaces. These are used to mitigate substantial heat loads induced by synchrotron radiation along the vacuum chamber walls and provide an effective pumping speed for conductance-limited vacuum pipes with an inner diameter of 22 mm. At present, the procurement of all the vacuum components has been completed. The installation of the storage ring vacuum system started in November 2023, and finished in July 2024. Vacuum sectors were baked and activated in-situ for the NEG films inside the vacuum chambers, an average static pressure of 5×10-8 Pa has been reached, which is better than the specification. The results verify the feasibility of the storage ring vacuum system from the design and fabrication of vacuum chambers, RF shielding bellows, photon absorbers, etc. to NEG coating with magnetron sputtering, installation, activation of NEG films in-situ, etc. After more than 20 days of conditioning, the beam current of the HEPS storage ring reached 12 mA, marking a milestone progress in the HEPS accelerator.

Key words: high energy photon source, vacuum chamber, RF shielding bellows, photon absorber, NEG coating

中图分类号:  TL50

[1] QIN Q, CAO J S, CHEN F S, et al.Progress of HEPS accelerator system design[C]// Proceedings of the 10th International Particle Accelerator Conference. Melbourne, Australia:IPAC, 2019: 633-635.
[2] JIAO Y, CUI X, DUAN Z, et al.Beam dynamic study in the HEPS storage ring[C]// Proceedings of the 10th International Particle Accelerator Conference. Melbourne, Australia:IPAC, 2019: 1203-1207.
[3] HEPS初设报告第三册-加速器-V2-5[Z].
[4] KERSEVAN R, ADY M.Recent developments of monte-carlo codes MolFlow+ and SynRad+[C]// Proceedings of the 10th International Particle Accelerator Conference. Melbourne, Australia, 2019: 1327-1330.
[5] 董海义,李琦,彭晓华,等. BEPCII储存环真空系统性能[J]. 真空, 2008,45(4): 29-31.
[6] AL-DMOUR E, AHLBACK J, EINFELD D, et al.Diffraction-limited storage-ring vacuum technology[J]. Journal of Synchrotron Radiation, 2014, 21(5): 878-883.
[7] SERAPHIM R M, BAGNATO O R, FERRAZ R O, et al.Vacuum system design for the SIRIUS storage ring[C]//6th International Particle Accelerator Conference. Richmond, VA, USA: IPAC, 2015: 2744-2746.
[8] 王徐建,檀财旺,郭迪舟,等. CuCrZr/316LN合金管激光焊接头组织与性能[J]. 焊接学报,2023,44(2):123-128.
[9] 王徐建,王廷,何平,等. CuCrZr/Inconel 625电子束焊接接头组织与性能[J]. 焊接学报,2022,43(9):92-97.
[10] DONG H Y, SONG H, LI Q, et al.The vacuum system of the BEPCII storage ring[J]. Nuclear Instruments and Methods in Physics Research A, 2010, 620(2/3): 166-170.
[11] CARTER J A, BILLETT B, BRAJUSKOVIC B, et al.Final design of the aps-upgrade storage ring vacuum system[C]// NAPAC2019. Lansing, MI, USA: JACoW Publishing, 2019: 315-317.
[12] DEPAOLA F, AMUNDSEN C, SHARMA S.Manufacturing of photon beam-intercepting components from CuCrZr[C]// 9th Edition of the Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation Conference. Barcelona, Spain, 2016: 233-235.
[13] CHIGGIATO P, PINTO P C.Ti-Zr-V non-evaporable getter films: from development to large scale production for the Large Hadron Collider[J]. Thin Solid Films, 2006, 515(2): 382-388.
[14] HE P.Accelerator vacuum technology challenges for next-generation synchrotron-light sources[C]//Proceedings of IPAC 2017. Copenhagen, Denmark,2017: 4830-4835.
[15] PORCELLI T, BUSETTO B, DINH F, et al.SAES experience in NEG coating of challenging vacuum chambers[C]// 14th Interational Particle Accelerator Conference. Venice, ltaly: IPAC, 2023: 4316-4319.
[16] 马永胜,杨雨晨,景泳淼,等. 薄膜缺陷研究进展综述[J]. 表面技术,2021,50(3):91-100.
[17] PINTO P C, BARTOVA B, HOLLIGER B, et al.Development and production of non evaporable getter coatings for the vacuum chambers of the 3 GeV storage ring of MAX IV[C]//Proceedings of IPAC. Richmond, USA, 2015: 3145-3147.
[18] MALYSHEV O B, VALIZADEH R, HANNAH A N.Pumping properties of Ti-Zr-Hf-V non-evaporable getter coating[J]. Vacuum,2014,100: 26-28.
[19] NALLIN P H, GOMES G R, FERRAZ R O, et al.The Sirius heating system for the in-situ NEG activation[C]// Proceedings of the 10th International Particle Accelerator Conference. Melbourne, Australia: IPEC, 2019: 4109-4111.
[20] MULVANY O K, BILLETT B, BRAJUSKOVIC B, et al.NEG-coated copper vacuum chambers for the APS-upgrade storage ring vacuum system[C]//North American Particle Accelerator Conference (NAPAC'19). Geneva, Switzerland, 2019: 477-479.
[1] 谭彪, 黄涛, 王鹏程, 刘佳明, 关玉慧, 刘顺明, 孙晓阳, 董海义. 中国散裂中子源RCS真空系统*[J]. 真空, 2021, 58(3): 1-6.
[2] 邢银龙, 吴杰峰, 刘志宏, 李波, 周能涛. 316LN异型真空盒超高真空表面处理工艺的研究*[J]. 真空, 2019, 56(6): 27-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .